The poor or lack of injured adult central nervous system (CNS) axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK) that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration. 1. Introduction In the mammalian central nervous system (CNS), the failure of spontaneous regeneration of injured axons leads to devastating consequences and poor functional recovery. Severe injuries to CNS axons not only damage plasticity of synapses but also provoke complex degenerative cascades, leading to glial and neuronal apoptosis. The vast majority of injured CNS neurons progressively fails to regenerate beyond the lesion site to reestablish functional synaptic transmission and only a small number of axons show compensatory sprouting, resulting in poor functional recovery [1–5]. Lack or insufficient trophic support is one of the major determinants attributed to the failure of adult CNS axon regeneration. Growth factors that act both on neurons and glia, mediate a variety of physiological functions from early embryonic to the adult state, including synaptic plasticity, cell survival, and death in the CNS [6–10]. Hence, trophic factors and their corresponding receptor-mediated signalling pathways involved in neuronal survival and axon regeneration have been subjected to considerable attention. Many of these studies have been aimed at developing potential therapeutic interventions for the treatment of peripheral nervous system (PNS) and CNS injuries and certain neurodegenerative disorders like Parkinson’s and Alzheimer’s diseases. 2. Mechanisms behind the Failure of CNS Axon Regeneration In general, functional axon regeneration is a multifactorial process; a myriad of molecules and a combination of signalling pathways are often involved. Two important prerequisites are essential for successful regeneration. Firstly, the injured neurons must be competent to survive after injury,
References
[1]
Y. Li and G. Raisman, “Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord,” Experimental Neurology, vol. 134, no. 1, pp. 102–111, 1995.
[2]
P. J. Horner and F. H. Gage, “Regenerating the damaged central nervous system,” Nature, vol. 407, no. 6807, pp. 963–970, 2000.
[3]
B. Ji, L. C. Case, K. Liu et al., “Assessment of functional recovery and axonal sprouting in oligodendrocyte-myelin glycoprotein (OMgp) null mice after spinal cord injury,” Molecular and Cellular Neuroscience, vol. 39, no. 2, pp. 258–267, 2008.
[4]
Z. Cao, Y. Gao, K. Deng, G. Williams, P. Doherty, and F. S. Walsh, “Receptors for myelin inhibitors: structures and therapeutic opportunities,” Molecular and Cellular Neuroscience, vol. 43, no. 1, pp. 1–14, 2010.
[5]
F. Sun and Z. He, “Neuronal intrinsic barriers for axon regeneration in the adult CNS,” Current Opinion in Neurobiology, vol. 20, no. 4, pp. 510–518, 2010.
[6]
H. Thoenen, “Neurotrophins and activity-dependent plasticity,” Progress in Brain Research, vol. 128, pp. 183–191, 2000.
[7]
M. V. Chao, “Neurotrophins and their receptors: a convergence point for many signalling pathways,” Nature Reviews Neuroscience, vol. 4, no. 4, pp. 299–309, 2003.
[8]
C. W. Cotman, “The role of neurotrophins in brain aging: a perspective in honor of Regino Perez-Polo,” Neurochemical Research, vol. 30, no. 6-7, pp. 877–881, 2005.
[9]
P. Lu and M. H. Tuszynski, “Growth factors and combinatorial therapies for CNS regeneration,” Experimental Neurology, vol. 209, no. 2, pp. 313–320, 2008.
[10]
T. Gordon, “The role of neurotrophic factors in nerve regeneration,” Neurosurgical Focus, vol. 26, no. 2, p. E3, 2009.
[11]
A. E. Fournier and S. M. Strittmatter, “Repulsive factors and axon regeneration in the CNS,” Current Opinion in Neurobiology, vol. 11, no. 1, pp. 89–94, 2001.
[12]
K. R. Bulsara, B. J. Iskandar, A. T. Villavicencio, and J. H. P. Skene, “A new millenium for spinal cord regeneration: growth-associated genes,” Spine, vol. 27, no. 17, pp. 1946–1949, 2002.
[13]
J. L. Goldberg, “How does an axon grow?” Genes and Development, vol. 17, no. 8, pp. 941–958, 2003.
[14]
M. E. Vargas and B. A. Barres, “Why is Wallerian degeneration in the CNS so slow?” Annual Review of Neuroscience, vol. 30, pp. 153–179, 2007.
[15]
J. Silver, “CNS regeneration: only on one condition,” Current Biology, vol. 19, no. 11, pp. R444–R446, 2009.
[16]
W. E. le Gros Clark, “The problem of neuronal regeneration in the central nervous system: II. The insertion of peripheral nerve stumps into the brain,” Journal of Anatomy, vol. 77, part 3, pp. 251–259, 1943.
[17]
K. Holm and O. Isacson, “Factors intrinsic to the neuron can induce and maintain its ability to promote axonal outgrowth: a role for BCL2?” Trends in Neurosciences, vol. 22, no. 6, pp. 269–273, 1999.
[18]
M. Berry, Z. Ahmed, M. R. Douglas, and A. Logan, “Epidermal growth factor receptor antagonists and CNS axon regeneration: mechanisms and controversies,” Brain Research Bulletin, vol. 84, no. 4-5, pp. 289–299, 2011.
[19]
R. Harel, C. A. Iannotti, D. Hoh, M. Clark, J. Silver, and M. P. Steinmetz, “Oncomodulin affords limited regeneration to injured sensory axons in vitro and in vivo,” Experimental Neurology, vol. 233, no. 2, pp. 708–716, 2012.
[20]
P. M. Richardson, V. M. K. Issa, and S. Shemie, “Regeneration and retrograde degeneration of axons in the rat optic nerve,” Journal of Neurocytology, vol. 11, no. 6, pp. 949–966, 1982.
[21]
H. M. Chao, R. L. Spencer, R. R. Sakai, and B. S. McEwen, “The expression of growth-associated protein GAP-43 mRNA in the rat hippocampus in response to adrenalectomy and aging,” Molecular and Cellular Neurosciences, vol. 3, no. 6, pp. 529–535, 1992.
[22]
K. J. L. Fernandes, D.-P. Fan, B. J. Tsui, S. L. Cassar, and W. Tetzlaff, “Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP-43, tubulins, and neurofilament-M,” Journal of Comparative Neurology, vol. 414, no. 4, pp. 495–510, 1999.
[23]
K. Fenrich and T. Gordon, “Canadian association of neuroscience review: axonal regeneration in the peripheral and central nervous systems—current issues and advances,” Canadian Journal of Neurological Sciences, vol. 31, no. 2, pp. 142–156, 2004.
[24]
J. Wong and M. M. Oblinger, “A comparison of peripheral and central axotomy effects on neurofilament and tubulin gene expression in rat dorsal root ganglion neurons,” Journal of Neuroscience, vol. 10, no. 7, pp. 2215–2222, 1990.
[25]
V. M. K. Verge, J. P. Merlio, J. Grondin et al., “Colocalization of NGF binding sites, trk mRNA, and low-affinity NGF receptor mRNA in primary sensory neurons: responses to injury and infusion of NGF,” Journal of Neuroscience, vol. 12, no. 10, pp. 4011–4022, 1992.
[26]
P. Caroni, L. Aigner, and C. Schneider, “Intrinsic neuronal determinants locally regulate extrasynaptic and synaptic growth at the adult neuromuscular junction,” Journal of Cell Biology, vol. 136, no. 3, pp. 679–692, 1997.
[27]
G. D. Li, Y. Wo, M. F. Zhong et al., “Expression of fibroblast growth factors in rat dorsal root ganglion neurons and regulation after peripheral nerve injury,” NeuroReport, vol. 13, no. 15, pp. 1903–1907, 2002.
[28]
L. T. Kuo, S. Y. Tsai, M. J. Groves, S. F. An, and F. Scaravilli, “Gene expression profile in rat dorsal root ganglion following sciatic nerve injury and systemic neurotrophin-3 administration,” Journal of Molecular Neuroscience, vol. 43, no. 3, pp. 503–515, 2011.
[29]
A. Sandvig, M. Berry, L. B. Barrett, A. Butt, and A. Logan, “Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration,” Glia, vol. 46, no. 3, pp. 225–251, 2004.
[30]
P. Verma and J. Fawcett, “Spinal cord regeneration,” Advances in Biochemical Engineering/Biotechnology, vol. 94, pp. 43–66, 2005.
[31]
F. Y. H. Teng and B. L. Tang, “Axonal regeneration in adult CNS neurons—signaling molecules and pathways,” Journal of Neurochemistry, vol. 96, no. 6, pp. 1501–1508, 2006.
[32]
M. T. Killeen and S. S. Sybingco, “Netrin, Slit and Wnt receptors allow axons to choose the axis of migration,” Developmental Biology, vol. 323, no. 2, pp. 143–151, 2008.
[33]
H. Mizuno, T. Hirano, and Y. Tagawa, “Pre-synaptic and post-synaptic neuronal activity supports the axon development of callosal projection neurons during different post-natal periods in the mouse cerebral cortex,” European Journal of Neuroscience, vol. 31, no. 3, pp. 410–424, 2010.
[34]
J. Schlessinger, “Cell signaling by receptor tyrosine kinases,” Cell, vol. 103, no. 2, pp. 211–225, 2000.
[35]
E. M. Beyer and G. Macbeath, “Crosstalk between receptor tyrosine kinase and tumor necrosis factor-alpha signaling networks regulates apoptosis but not proliferation,” Molecular & Cellular Proteomics, vol. 11, no. 6, 2012.
[36]
P. van der Geer, T. Hunter, and R. A. Lindberg, “Receptor protein-tyrosine kinases and their signal transduction pathways,” Annual Review of Cell Biology, vol. 10, pp. 251–337, 1994.
[37]
D. R. Robinson, Y. M. Wu, and S. F. Lin, “The protein tyrosine kinase family of the human genome,” Oncogene, vol. 19, no. 49, pp. 5548–5557, 2000.
[38]
E. Li and K. Hristova, “Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies,” Biochemistry, vol. 45, no. 20, pp. 6241–6251, 2006.
[39]
D. L. Cadena and G. N. Gill, “Receptor tyrosine kinases,” The FASEB Journal, vol. 6, no. 6, pp. 2332–2337, 1992.
[40]
W. J. Fantl, D. E. Johnson, and L. T. Williams, “Signalling by receptor tyrosine kinases,” Annual Review of Biochemistry, vol. 62, pp. 453–481, 1993.
[41]
W. Li and W. T. Miller, “Role of the activation loop tyrosines in regulation of the insulin-like growth factor I receptor-tyrosine kinase,” Journal of Biological Chemistry, vol. 281, no. 33, pp. 23785–23791, 2006.
[42]
Y. Yamanashi, T. Tezuka, and K. Yokoyama, “Activation of receptor protein-tyrosine kinases from the cytoplasmic compartment,” Journal of Biochemistry, vol. 151, no. 4, pp. 353–359, 2012.
[43]
I. Dikic and S. Giordano, “Negative receptor signalling,” Current Opinion in Cell Biology, vol. 15, no. 2, pp. 128–135, 2003.
[44]
S. Cohen, “Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal,” The Journal of Biological Chemistry, vol. 237, pp. 1555–1562, 1962.
[45]
M. A. Olayioye, R. M. Neve, H. A. Lane, and N. E. Hynes, “The ErbB signaling network: receptor heterodimerization in development and cancer,” The EMBO Journal, vol. 19, no. 13, pp. 3159–3167, 2000.
[46]
P. Casalini, M. V. Iorio, E. Galmozzi, and S. Ménard, “Role of HER receptors family in development and differentiation,” Journal of Cellular Physiology, vol. 200, no. 3, pp. 343–350, 2004.
[47]
A. M. Planas, C. Justicia, M. A. Soriano, and I. Ferrer, “Epidermal growth factor receptor in proliferating reactive glia following transient focal ischemia in the rat brain,” Glia, vol. 23, no. 2, pp. 120–129, 1998.
[48]
R. W. C. Wong and L. Guillaud, “The role of epidermal growth factor and its receptors in mammalian CNS,” Cytokine and Growth Factor Reviews, vol. 15, no. 2-3, pp. 147–156, 2004.
[49]
M. Erschbamer, K. Pernold, and L. Olson, “Inhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury,” Journal of Neuroscience, vol. 27, no. 24, pp. 6428–6435, 2007.
[50]
S. R. Hubbard, “Juxtamembrane autoinhibition in receptor tyrosine kinases,” Nature Reviews Molecular Cell Biology, vol. 5, no. 6, pp. 464–471, 2004.
[51]
B. Liu and A. H. Neufeld, “Activation of epidermal growth factor receptor signals induction of nitric oxide synthase-2 in human optic nerve head astrocytes in glaucomatous optic neuropathy,” Neurobiology of Disease, vol. 13, no. 2, pp. 109–123, 2003.
[52]
V. Koprivica, K. S. Cho, J. B. Park et al., “Neuroscience: EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans,” Science, vol. 310, no. 5745, pp. 106–110, 2005.
[53]
M. R. Douglas, K. C. Morrison, S. J. Jacques et al., “Off-target effects of epidermal growth factor receptor antagonists mediate retinal ganglion cell disinhibited axon growth,” Brain, vol. 132, part 11, pp. 3102–3121, 2009.
[54]
Z. Ahmed, S. J. Jacques, M. Berry, and A. Logan, “Epidermal growth factor receptor inhibitors promote CNS axon growth through off-target effects on glia,” Neurobiology of Disease, vol. 36, no. 1, pp. 142–150, 2009.
[55]
B. Liu, H. Chen, T. G. Johns, and A. H. Neufeld, “Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury,” Journal of Neuroscience, vol. 26, no. 28, pp. 7532–7540, 2006.
[56]
B. Liu and A. H. Neufeld, “Activation of epidermal growth factor receptors in astrocytes: from development to neural injury,” Journal of Neuroscience Research, vol. 85, no. 16, pp. 3523–3529, 2007.
[57]
J. Wan, R. Ramachandran, and D. Goldman, “HB-EGF is necessary and sufficient for müller glia dedifferentiation and retina regeneration,” Developmental Cell, vol. 22, no. 2, pp. 334–347, 2012.
[58]
S. Codeluppi, C. I. Svensson, M. P. Hefferan et al., “The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord,” Journal of Neuroscience, vol. 29, no. 4, pp. 1093–1104, 2009.
[59]
C. M. Chien, K. L. Lin, J. C. Su, L. S. Chang, and S. R. Lin, “Inactivation of epidermal growth factor receptor and downstream pathways in oral squamous cell carcinoma Ca9-22 cells by cardiotoxin III from Naja naja atra,” Journal of Natural Products, vol. 72, no. 10, pp. 1735–1740, 2009.
[60]
Q. Han, W. Jin, Z. Xiao et al., “The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody,” Biomaterials, vol. 31, no. 35, pp. 9212–9220, 2010.
[61]
R. E. White, M. Rao, J. C. Gensel, D. M. McTigue, B. K. Kaspar, and L. B. Jakeman, “Transforming growth factor α transforms astrocytes to a growth-supportive phenotype after spinal cord injury,” Journal of Neuroscience, vol. 31, no. 42, pp. 15173–15187, 2011.
[62]
I. Ferrer, S. Alcántara, J. Ballabriga et al., “Transforming growth factor-α (TGF-α) and epidermal growth factor-receptor (EGF-R) immunoreactivity in normal and pathologic brain,” Progress in Neurobiology, vol. 49, no. 2, pp. 99–123, 1996.
[63]
M. Sibilia, J. P. Steinbach, L. Stingl, A. Aguzzi, and E. F. Wagner, “A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor,” The EMBO Journal, vol. 17, no. 3, pp. 719–731, 1998.
[64]
F. H. Gage, “Mammalian neural stem cells,” Science, vol. 287, no. 5457, pp. 1433–1438, 2000.
[65]
S. Sirko, A. von Holst, A. Weber et al., “Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny,” Stem Cells, vol. 28, no. 4, pp. 775–787, 2010.
[66]
Q. Zhang, G. Liu, Y. Wu, H. Sha, P. Zhang, and J. Jia, “BDNF promotes EGF-induced proliferation and migration of human fetal neural stem/progenitor cells via the PI3K/Akt pathway,” Molecules, vol. 16, no. 12, pp. 10146–10156, 2011.
[67]
R. Heumann, “Neutrophin signalling,” Current Opinion in Neurobiology, vol. 4, no. 5, pp. 668–679, 1994.
[68]
C. F. Ibanez, “Neurotrophic factors: from structure-function studies to designing effective therapeutics,” Trends in Biotechnology, vol. 13, no. 6, pp. 217–227, 1995.
[69]
K. Ohira and M. Hayashi, “A new aspect of the TrkB signaling pathway in neural plasticity,” Current Neuropharmacology, vol. 7, no. 4, pp. 276–285, 2009.
[70]
M. Barbacid, “Neurotrophic factors and their receptors,” Current Opinion in Cell Biology, vol. 7, no. 2, pp. 148–155, 1995.
[71]
W. A. Frazier, R. H. Angeletti, and R. A. Bradshaw, “Nerve growth factor and insulin,” Science, vol. 176, no. 4034, pp. 482–488, 1972.
[72]
A. Ullrich, J. R. Bell, and E. Y. Chen, “Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes,” Nature, vol. 313, no. 6005, pp. 756–761, 1985.
[73]
E. J. Huang and L. F. Reichardt, “Trk receptors: roles in neuronal signal transduction,” Annual Review of Biochemistry, vol. 72, pp. 609–642, 2003.
[74]
K. D. Cliffer, J. A. Siuciak, S. R. Carson et al., “Physiological characterization of taxol-induced large-fiber sensory neuropathy in the rat,” Annals of Neurology, vol. 43, no. 1, pp. 46–55, 1998.
[75]
H. T. Zhang, L. Y. Li, X. L. Zou et al., “Immunohistochemical distribution of NGF, BDNF, NT-3, and NT-4 in adult rhesus monkey brains,” Journal of Histochemistry and Cytochemistry, vol. 55, no. 1, pp. 1–19, 2007.
[76]
R. H. Fryer, D. R. Kaplan, and L. F. Kromer, “Truncated trkB receptors on nonneuronal cells inhibit BDNF-induced neurite outgrowth in vitro,” Experimental Neurology, vol. 148, no. 2, pp. 616–627, 1997.
[77]
R. A. Segal, “Selectivity in neurotrophin signaling: theme and variations,” Annual Review of Neuroscience, vol. 26, pp. 299–330, 2003.
[78]
I. Mocchetti and J. R. Wrathall, “Neurotrophic factors in central nervous system trauma,” Journal of Neurotrauma, vol. 12, no. 5, pp. 853–870, 1995.
[79]
M. Watanabe, Y. Tokita, M. Kato, and Y. Fukuda, “Intravitreal injections of neurotrophic factors and forskolin enhance survival and axonal regeneration of axotomized β ganglion cells in cat retina,” Neuroscience, vol. 116, no. 3, pp. 733–742, 2003.
[80]
X. Y. Song, F. Li, F. H. Zhang, J. H. Zhong, and X. F. Zhou, “Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spina cord injury,” PLoS One, vol. 3, no. 3, p. e1707, 2008.
[81]
V. Pernet, W. W. Hauswirth, and A. di Polo, “Extracellular signal-regulated kinase 1/2 mediates survival, but not axon regeneration, of adult injured central nervous system neurons in vivo,” Journal of Neurochemistry, vol. 93, no. 1, pp. 72–83, 2005.
[82]
X. M. Xu, V. Guenard, N. Kleitman, P. Aebischer, and M. B. Bunge, “A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord,” Experimental Neurology, vol. 134, no. 2, pp. 261–272, 1995.
[83]
K. M. Giehl, “Trophic dependencies of rodent corticospinal neurons,” Reviews in the Neurosciences, vol. 12, no. 1, pp. 79–94, 2001.
[84]
D. M. Valenzuela, P. C. Maisonpierre, D. J. Glass et al., “Alternative forms of rat TrkC with different functional capabilities,” Neuron, vol. 10, no. 5, pp. 963–974, 1993.
[85]
S. Davies, L. S. Illis, and G. Raisman, “Regeneration in the central nervous system and related factors. Summary of the bermuda paraplegia conference, April 1994 (International Spinal Research Trust),” Paraplegia, vol. 33, no. 1, pp. 10–17, 1995.
[86]
M. Rydén and C. F. Ibá?ez, “Binding of neurotrophin-3 to p75LNGFR, TrkA, and TrkB mediated by a single functional epitope distinct from that recognized by TrkC,” Journal of Biological Chemistry, vol. 271, no. 10, pp. 5623–5627, 1996.
[87]
B. K. Kwon, J. Liu, C. Messerer et al., “Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 5, pp. 3246–3251, 2002.
[88]
B. K. Kwon, J. Liu, L. Oschipok, J. Teh, Z. W. Liu, and W. Tetzlaff, “Rubrospinal neurons fail to respond to brain-derived neurotrophic factor applied to the spinal cord injury site 2 months after cervical axotomy,” Experimental Neurology, vol. 189, no. 1, pp. 45–57, 2004.
[89]
J. G. Boyd and T. Gordon, “The neurotrophin receptors, trkB and p75, differentially regulate motor axonal regeneration,” Journal of Neurobiology, vol. 49, no. 4, pp. 314–325, 2001.
[90]
O. Islam, T. X. Loo, and K. Heese, “Brain-derived neurotrophic factor (BDNF) has proliferative effects on neural stem cells through the truncated TRK-B receptor, MAP kinase, AKT, and STAT-3 signaling pathways,” Current Neurovascular Research, vol. 6, no. 1, pp. 42–53, 2009.
[91]
J. Y. F. Wong, G. T. Liberatore, G. A. Donnan, and D. W. Howells, “Expression of brain-derived neurotrophic factor and TrkB neurotrophin receptors after striatal injury in the mouse,” Experimental Neurology, vol. 148, no. 1, pp. 83–91, 1997.
[92]
K. A. Baker, S. Nakashima, and T. Hagg, “Dorsal column sensory axons lack TrkC and are not rescued by local neurotrophin-3 infusions following spinal cord contusion in adult rats,” Experimental Neurology, vol. 205, no. 1, pp. 82–91, 2007.
[93]
J. K. Atwal, J. Pinkston-Gosse, J. Syken et al., “PirB is a functional receptor for myelin inhibitors of axonal regeneration,” Science, vol. 322, no. 5903, pp. 967–970, 2008.
[94]
Y. Fujita, S. Endo, T. Takai, and T. Yamashita, “Myelin suppresses axon regeneration by PIR-B/SHP-mediated inhibition of Trk activity,” The EMBO Journal, vol. 30, no. 7, pp. 1389–1401, 2011.
[95]
G. Williams, E. J. Williams, P. Maison, M. N. Pangalos, F. S. Walsh, and P. Doherty, “Overcoming the inhibitors of myelin with a novel neurotrophin strategy,” Journal of Biological Chemistry, vol. 280, no. 7, pp. 5862–5869, 2005.
[96]
Y. Goldshmit, M. D. Spanevello, S. Tajouri et al., “EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice,” The PLoS ONE, vol. 6, no. 9, p. e24636, 2011.
[97]
M. S. Airaksinen and M. Saarma, “The GDNF family: signalling, biological functions and therapeutic value,” Nature Reviews Neuroscience, vol. 3, no. 5, pp. 383–394, 2002.
[98]
M. S. Airaksinen, L. Holm, and T. H?tinen, “Evolution of the GDNF family ligands and receptors,” Brain, Behavior and Evolution, vol. 68, no. 3, pp. 181–190, 2006.
[99]
M. Wan, J. Li, K. Herbst et al., “LRP6 mediates cAMP generation by G protein-coupled receptors through regulating the membrane targeting of Gαs,” Science Signaling, vol. 4, no. 164, p. ra15, 2011.
[100]
Q. Yan, C. Matheson, and O. T. Lopez, “In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons,” Nature, vol. 373, no. 6512, pp. 341–344, 1995.
[101]
D. M. Yurek, “Glial cell line-derived neurotrophic factor improves survival of dopaminergic neurons in transplants of fetal ventral mesencephalic tissue,” Experimental Neurology, vol. 153, no. 2, pp. 195–202, 1998.
[102]
T. H. Chu, S. Y. Li, W. M. Wong, Q. Yuan, W. Wu, and A. Guo, “Implantation of neurotrophic factor-treated sensory nerve graft enhances survival and axonal regeneration of motoneurons after spinal root avulsion,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 1, pp. 94–101, 2009.
[103]
A. Blesch and M. H. Tuszynski, “GDNF gene delivery to injured adult CNS motor neurons promotes axonal growth, expression of the trophic neuropeptide CGRP, and cellular protection,” Journal of Comparative Neurology, vol. 436, no. 4, pp. 399–410, 2001.
[104]
T. Iwase, C. G. Jung, H. Bae, M. Zhang, and B. Soliven, “Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells,” Journal of Neurochemistry, vol. 94, no. 6, pp. 1488–1499, 2005.
[105]
T. W. Gould, S. Yonemura, R. W. Oppenheim, S. Ohmori, and H. Enomoto, “The neurotrophic effects of glial cell line-derived neurotrophic factor on spinal motoneurons are restricted to fusimotor subtypes,” Journal of Neuroscience, vol. 28, no. 9, pp. 2131–2146, 2008.
[106]
Konishi, Y. L. Yang, and P. He, “Disruption of specific GDNF receptor subtype signaling impairs cortical neuronal survival in Alzheimer's brains,” Molecular Neurodegeneration, vol. 7, supplement 1, p. L26, 2012.
[107]
T. H. Chu, L. Wang, A. Guo, V. W. Chan, C. W. Wong, and W. Wu, “GDNF-treated acellular nerve graft promotes motoneuron axon regeneration after implantation into cervical root avulsed—spinal cord,” Neuropathology and Applied Neurobiology. In press.
[108]
E. Fujita, Y. Kouroku, Y. Miho, T. Tsukahara, S. Ishiura, and T. Momoi, “Wortmannin enhances activation of CPP32 (Caspase-3) induced by TNF or anti-Fas,” Cell Death and Differentiation, vol. 5, no. 4, pp. 289–297, 1998.
[109]
N. M. Oyesiku and D. J. Wigston, “Ciliary neurotrophic factor stimulates neurite outgrowth from spinal cord neurons,” Journal of Comparative Neurology, vol. 364, no. 1, pp. 68–77, 1996.
[110]
N. Syed, P. Richardson, and A. Bulloch, “Ciliary neurotrophic factor, unlike nerve growth factor, supports neurite outgrowth but not synapse formation by adult Lymnaea neurons,” Journal of Neurobiology, vol. 29, no. 3, pp. 293–303, 1996.
[111]
S. G. Leaver, Q. Cui, G. W. Plant et al., “AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells,” Gene Therapy, vol. 13, no. 18, pp. 1328–1341, 2006.
[112]
A. Müller, T. G. Hauk, and D. Fischer, “Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation,” Brain, vol. 130, part 12, pp. 3308–3320, 2007.
[113]
M. Leibinger, A. Andreadaki, and D. Fischer, “Role of mTOR in neuroprotection and axon regeneration after inflammatory stimulation,” Neurobiology of Disease, vol. 46, no. 2, pp. 314–324, 2012.
[114]
J. A. Miotke, A. J. MacLennan, and R. L. Meyer, “Immunohistochemical localization of CNTFRalpha in adult mouse retina and optic nerve following intraorbital nerve crush: evidence for the axonal loss of a trophic factor receptor after injury,” Journal of Comparative Neurology, vol. 500, no. 2, pp. 384–400, 2007.
[115]
L. Wang, B. Hu, W. M. Wong, P. Lu, W. Wu, and X. M. Xu, “Glial and axonal responses in areas of Wallerian degeneration of the corticospinal and dorsal ascending tracts after spinal cord dorsal funiculotomy,” Neuropathology, vol. 29, no. 3, pp. 230–241, 2009.
[116]
D. M. García and J. R. Koke, “Astrocytes as gate-keepers in optic nerve regeneration—a mini-review,” Comparative Biochemistry and Physiology, vol. 152, no. 2, pp. 135–138, 2009.
[117]
M. Hellstr?m, M. A. Pollett, and A. R. Harvey, “Post-injury delivery of rAAV2-CNTF combined with short-term pharmacotherapy is neuroprotective and promotes extensive axonal regeneration after optic nerve trauma,” Journal of Neurotrauma, vol. 28, no. 12, pp. 2475–2483, 2011.
[118]
E. R. Hollis II, P. Lu, A. Blesch, and M. H. Tuszynski, “IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury,” Experimental Neurology, vol. 215, no. 1, pp. 53–59, 2009.
[119]
E. J. Sanders, W. Y. Lin, E. Parker, and S. Harvey, “Growth hormone promotes the survival of retinal cells in vivo,” General and Comparative Endocrinology, vol. 172, no. 1, pp. 140–150, 2011.
[120]
R. Salie and J. D. Steeves, “IGF-1 and BDNF promote chick bulbospinal neurite outgrowth in vitro,” International Journal of Developmental Neuroscience, vol. 23, no. 7, pp. 587–598, 2005.
[121]
N. Wilczak, D. Chesik, D. Hoekstra, and J. de Keyser, “IGF binding protein alterations on periplaque oligodendrocytes in multiple sclerosis: implications for remyelination,” Neurochemistry International, vol. 52, no. 8, pp. 1431–1435, 2008.
[122]
A. J. Fischer, C. Zelinka, and M. A. Scott, “Heterogeneity of glia in the retina and optic nerve of birds and mammals,” PLoS One, vol. 5, no. 6, p. e10774, 2010.
[123]
Y. Koriyama, K. Homma, K. Sugitani et al., “Upregulation of IGF-I in the goldfish retinal ganglion cells during the early stage of optic nerve regeneration,” Neurochemistry International, vol. 50, no. 5, pp. 749–756, 2007.
[124]
V. Gudi, J. ?kuljec, ?. Yildiz et al., “Spatial and temporal profiles of growth factor expression during CNS demyelination reveal the dynamics of repair priming,” The PLoS One, vol. 6, no. 7, Article ID e22623, 2011.
[125]
C. C. Stichel and H. W. Müller, “The CNS lesion scar: new vistas on an old regeneration barrier,” Cell and Tissue Research, vol. 294, no. 1, pp. 1–9, 1998.
[126]
L. A. Pfister, M. Papalo?zos, H. P. Merkle, and B. Gander, “Nerve conduits and growth factor delivery in peripheral nerve repair,” Journal of the Peripheral Nervous System, vol. 12, no. 2, pp. 65–82, 2007.
[127]
N. M. Geremia, L. M. E. Pettersson, J. C. Hasmatali et al., “Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons,” Experimental Neurology, vol. 223, no. 1, pp. 128–142, 2010.
[128]
W. D. Snider, “Functions of the neurotrophins during nervous system development: what the knockouts are teaching us,” Cell, vol. 77, no. 5, pp. 627–638, 1994.
[129]
M. Trupp, N. Belluardo, H. Funakoshi, and C. F. Ibánez, “Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-α indicates multiple mechanisms of trophic actions in the adult rat CNS,” Journal of Neuroscience, vol. 17, no. 10, pp. 3554–3567, 1997.
[130]
J. L. Goldberg and B. A. Barres, “The relationship between neuronal survival and regeneration,” Annual Review of Neuroscience, vol. 23, pp. 579–612, 2000.
[131]
J. G. Boyd and T. Gordon, “Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury,” Molecular Neurobiology, vol. 27, no. 3, pp. 277–323, 2003.
[132]
J. Mey and S. Thanos, “Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo,” Brain Research, vol. 602, no. 2, pp. 304–317, 1993.
[133]
U. Bartsch, A. Faissner, J. Trotter et al., “Tenascin demarcates the boundary between the myelinated and nonmyelinated part of retinal ganglion cell axons in the developing and adult mouse,” Journal of Neuroscience, vol. 14, no. 8, pp. 4756–4768, 1994.
[134]
Y. Luo, I. Shepherd, J. Li, M. J. Renzi, S. Chang, and J. A. Raper, “A family of molecules related to collapsin in the embryonic chick nervous system,” Neuron, vol. 14, no. 6, pp. 1131–1140, 1995.
[135]
P. Peinado-Ramon, M. Salvador, M. P. Villegas-Perez, and M. Vidal-Sanz, “Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells: a quantitative in vivo study,” Investigative Ophthalmology and Visual Science, vol. 37, no. 4, pp. 489–500, 1996.
[136]
P. D. Chowdary, D. L. Che, and B. Cui, “Neurotrophin signaling via long-distance axonal transport,” Annual Review of Physical Chemistry, vol. 63, pp. 571–594, 2012.
[137]
P. Lu, A. Blesch, and M. H. Tuszynski, “Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons,” Journal of Comparative Neurology, vol. 436, no. 4, pp. 456–470, 2001.
[138]
D. Cai, S. Yingjing, M. E. de Bellard, S. Tang, and M. T. Filbin, “Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism,” Neuron, vol. 22, no. 1, pp. 89–101, 1999.
[139]
A. McKay Hart, T. Brannstrom, M. Wiberg, and G. Terenghi, “Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: timecourse of cell death and elimination,” Experimental Brain Research, vol. 142, no. 3, pp. 308–318, 2002.
[140]
A. Blesch, P. Lu, and M. H. Tuszynski, “Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair,” Brain Research Bulletin, vol. 57, no. 6, pp. 833–838, 2002.