全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sequential Monte Carlo Methods for Discharge Time Prognosis in Lithium-ion Batteries

Keywords: Energy storage devices state of charge estimation state of charge prognosis particle filtering

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the implementation of a particle-filtering-based prognostic framework that allows estimating the state-of-charge (SOC) and predicting the discharge time of energy storage devices (more specifically lithium-ion batteries). The proposed approach uses an empirical state-space model inspired in the battery phenomenology and particle-filtering to study the evolution of the SOC in time; adapting the value of unknown model parameters during the filtering stage and enabling fast convergence for the state estimates that define the initial condition for the prognosis stage. SOC prognosis is implemented using a particle-filtering-based framework that considers a statistical characterization of uncertainty for future discharge profiles.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133