Automated surveillance of large geographic areas and target tracking by a team of autonomous agents is a topic that has received significant research and development effort. The standard approach is to decompose this problem into two steps. The first step is target track estimation and the second step is path planning by optimizing directly over target track estimation. This standard approach works well in many scenarios. However, an improved approach is needed for the scenario when general, nonparametric estimation is required, and the number of targets is unknown. The focus of this paper is to present a new approach that inherently handles the task to search for and track an unknown number of targets within a large geographic area. This approach is designed for the case when the search is performed by a team of autonomous agents and target estimation requires general, nonparametric methods. There are consequently very few assumptions made. The only assumption made is that a time-changing target track estimation is available and shared between the agents. This estimation is allowed to be general and nonparametric. Results are provided that compare the performance of this new approach with the standard approach. From these results it is concluded that this new approach improves search and tracking when the number of targets is unknown and target track estimation is general and nonparametric. 1. Introduction The advancement of computing technology has enabled the practical development of intelligent autonomous systems. Intelligent autonomous systems can be used to perform difficult sensing tasks. One such sensing task is to search for and track targets over large geographic areas. Much research has gone into this task resulting in a standard approach. This standard approach decomposes the problem into two steps. (1)Target track estimation. (2)Agent path optimization based on target track estimation. Significant research has been accomplished for each of these steps. Target track estimation has largely been solved [1–5] and this paper proposes no new methods for target track estimation. Agent path optimization based on target track estimation has been solved for many scenarios. However, the general scenario of when the number of targets is unknown still requires more development. The standard approach in general works particularly well when it can be assumed that there is a single target [6–14]. And in many scenarios the standard approach works well even when there are multiple targets [15, 16]. However, when there are multiple targets, methods following
References
[1]
Y. Bar-Shalom, Tracking and Data Association, Academic Press, San Diego, Calif, USA, 1987.
[2]
Y. Bar-Shalom and X. R. Li, Multitarget-Multisensor Tracking: Principles and Techniques, YBS, Urbana, Ill, USA, 1995.
[3]
S. S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems, Artech House, Norwood, Mass, USA, 1999.
[4]
L. Stone, Theory of Optimal Search, Academic Press, New York, NY, USA, 1975.
[5]
R. P. S. Mahler, Statistical Multisource-Multitarget Information Fusion, Artech House, Norwood, Mass, USA, 2007.
[6]
F. Bourgault, T. Furukawa, and H. Durrant-Whyte, “Optimal search fora lost target in a bayesian world,” in Field and Service Robotics, S. Yuta, H. Asama, E. Prassler, T. Tsubouchi, and S. Thrun, Eds., vol. 24 of Springer Tracts in Advanced Robotics, pp. 209–222, Springer, Berlin, Germany, 2006.
[7]
C. M. Kreucher, A. O. Hero, K. D. Kastella, and M. R. Morelande, “An information-based approach to sensor management in large dynamic networks,” Proceedings of the IEEE, vol. 95, no. 5, pp. 978–999, 2007.
[8]
B. Grocholsky, A. Makarenko, and H. Durrant-Whyte, “Information-theoretic coordinated control of multiple sensor platforms,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '03), vol. 1, pp. 1521–1526, September 2003.
[9]
G. M. Hoffmann and C. J. Tomlin, “Mobile sensor network control using mutual information methods and particle filters,” IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 32–47, 2010.
[10]
J. Tisdale, Z. W. Kim, and J. K. Hedrick, “Autonomous UAV path planning and estimation: an online path planning framework for cooperative search and localization,” IEEE Robotics and Automation Magazine, vol. 16, no. 2, pp. 35–42, 2009.
[11]
F. Bourgault, T. Furukawa, and H. F. Durrant-Whyte, “Coordinated decentralized search for a lost target in a bayesian world,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 48–53, October 2003.
[12]
A. D. Ryan, H. Durrant-Whyte, and J. K. Hedrick, “Information-theoretic sensor motion control for distributed estimation,” in Proceedings of the International Mechanical Engineering Congress and Exposition (IMECE '07), November 2007.
[13]
G. M. Mathews, H. Durrant-Whyte, and M. Prokopenko, “Decentralised decision making in heterogeneous teams using anonymous optimisation,” Robotics and Autonomous Systems, vol. 57, no. 3, pp. 310–3320, 2009, selected papers from IEEE International Conference on Multisensor Fusion and Integration (MFI '06).
[14]
J. G. Wood, B. Kehoe, and J. K. Hedrick, “Target estimate pdf-based optimal path planning algorithm with application to UAV systems,” in Proceedings of the Dynamic Systems and Control Conference (DSCC '10), pp. 749–756, ASME, September 2010.
[15]
E. M. Wong, F. Bourgault, and T. Furukawa, “Multi-vehicle Bayesian search for multiple lost targets,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '05), pp. 3169–3174, April 2005.
[16]
T. Furukawa, F. Bourgault, B. Lavis, and H. F. Durrant-Whyte, “Recursive Bayesian search-and-tracking using coordinated UAVs for lost targets,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '06), pp. 2521–2526, May 2006.
[17]
J. Wood, Search and tracking of an unknown number of targets by a team of autonomous agents utilizing time-evolving partition classification [Ph.D. thesis], University of California, Berkeley, Calif, USA, 2011.
[18]
J. Wood and J. K. Hedrick, “Space partitioning and classification for multi-target search and tracking by heterogeneous unmanned aerial system teams,” in Proceedings of the Infotech@Aerospace, American Institute of Aeronautics and Astronautics, 2011.
[19]
I. R. Goodman, R. P. S. Mahler, and H. T. Nguyen, Mathematics of Data Fusion, Kluwer Academic, Boston, Mass, USA, 1997.
[20]
G. Mathew, A. Surana, and I. Mezi?, “Uniform coverage control of mobile sensor networks for dynamic target detection,” in Proceedings of the 49th IEEE Conference on Decision and Control (CDC '10), pp. 7292–7299, December 2010.
[21]
G. Mathew and I. Mezi, “Metrics for ergodicity and design of ergodic dynamics for multi-agent systems,” Physica D, vol. 240, no. 4-5, pp. 432–442, 2011.
[22]
H. Chen, K. Chang, and C. S. Agate, “Tracking with UAV using tangent-plus-lyapunov vector field guidance,” in Proceedings of the 12th International Conference on Information Fusion, pp. 363–372, July 2009.
[23]
M. Shanmugavel, A. Tsourdos, B. White, and R. Zbikowski, “Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs,” Control Engineering Practice, vol. 18, no. 9, pp. 1084–1092, 2010.
[24]
J. Lee, R. Huang, A. Vaughn et al., “Strategies of path-planning for a UAV to track a ground vehicle,” in Proceedings of the 2nd Annual Symposium on Autonomous Intelligent Networks and Systems, 2003.
[25]
S. C. Spry, A. R. Girard, and J. K. Hedrick, “Convoy protection using multiple unmanned aerial vehicles: organization and coordination,” in Proceedings of the American Control Conference (ACC '05), pp. 3524–3529, June 2005.
[26]
A. Sinha, T. Kirubarajan, and Y. Bar-Shalom, “Autonomous ground target tracking by multiple cooperative UAVs,” in Proceedings of the IEEE Aerospace Conference, pp. 1–9, March 2005.
[27]
P. Skoglar, Planning methods for aerial exploration and ground target tracking [Licentiate thesis], Link?ping University, Link?ping, Sweden, 2009.
[28]
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, John Wiley & Sons, New York, NY, USA, 2001.
[29]
M. Godwin and J. K. Hedrick, “Stochastic approximation of an online vehicle routing problem for autonomous aircraft,” Infotech@Aerospace Conference, 2011.
[30]
M. Alighanbari and J. P. How, “A robust approach to the UAV task assignment problem,” International Journal of Robust and Nonlinear Control, vol. 18, no. 2, pp. 118–134, 2008.
[31]
Z. Kim and R. Sengupta, “Target detection and position likelihood using an aerial image sensor,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '08), pp. 59–64, May 2008.
[32]
R. Sengupta, J. Connors, B. Kehoe, Z. Kim, T. Kuhn, and J. Wood, “Autonomous search and rescue with ScanEagle,” Tech. Rep., 2010, prepared for Evergreen Unmanned Systems and Shell International Exploration and Production Inc.
[33]
J. Garvey, B. Kehoe, B. Basso et al., “An autonomous unmanned aerial vehicle system for sensing and tracking,” in Proceedings of the Infotech@Aerospace Conference, 2011.