|
Respiratory Research 2012
The ion channel transient receptor potential melastatin-2 does not play a role in inflammatory mouse models of chronic obstructive pulmonary diseasesKeywords: Transient receptor potential melastatin-2, Oxidative stress, Lung inflammation Abstract: Mice were exposed to ozone (3 ppm for 4 h) or lipopolysaccharide (LPS, 0.3 mg/kg, intranasaly). In another model, mice were exposed to tobacco smoke (750 μg/l total wet particulate matter) for 30 min twice a day on three consecutive days. For the exacerbation model, the smoke exposure on the morning of day 3 animals was replaced with intranasal administration of LPS (0.3 mg/kg). Animals were killed 3 and 24 h after the challenge (ozone and LPS model) or 18 h after the last tobacco smoke exposure. In vitro neutrophil chemotaxis and monocyte activation were also studied using cells isolated from wild type and TRPM2-deficient animals. Statistical significance for the in vivo data (P < 0.05) was determined using analysis of variance with Kruskal-Wallis and Dunns multiple comparison test.In all models studied, no difference in the bronchoalveolar lavage inflammation could be evidenced when comparing wild type and TRPM2-deficient mice. In addition, no difference could be seen in the lung inflammation as assessed by the measurement of various cytokines/chemokines. Similarly in various in vitro cellular activation assays using isolated neutrophils and monocytes no significant differences could be observed when comparing wild type and TRPM2-deficient mice.We have shown, in all the models tested, no difference in the development of airway inflammation or cell activation between TRPM2-deficient mice and their wild type counterparts. These results would suggest that inhibiting TRPM2 activity in COPD would have no anti-inflammatory effect.Chronic obstructive pulmonary disease (COPD) is a multifactorial disease involving inflammation, mucus production dysregulation, lung parenchymal destruction and systemic effects, all of which contribute to airflow limitation. In developed countries, cigarette smoking is the main aetiological agent of COPD and is believed to account for approximately 90% of the cases [1]. The burden of COPD on the healthcare system is enormous and it is predict
|