This paper proposes a kinematic model and an inertial localization system architecture for a riser inspecting robot. The robot scrolls outside the catenary riser, used for underwater petroleum exploration, and is designed to perform several nondestructive tests. It can also be used to reconstruct the riser profile. Here, a realistic simulation model of robot kinematics and its environment is proposed, using different sources of data: oil platform characteristics, riser static configuration, sea currents and waves, vortex-induced vibrations, and instrumentation model. A dynamic finite element model of the riser generates a nominal riser profile. When the robot kinematic model virtually scrolls the simulated riser profile, a robot kinematic pattern is calculated. This pattern feeds error models of a strapdown inertial measurement unit (IMU) and of a depth sensor. A Kalman filter fuses the simulated accelerometers data with simulated external measurements. Along the riser vertical part, the estimated localization error between the simulated nominal and Kalman filter reconstructed robot paths was about 2?m. When the robot model approaches the seabed it assumes a more horizontal trajectory and the localization error increases significantly. 1. Introduction One of the key elements of deep-water petroleum exploration is the production riser. Risers are the ducts that transport petroleum, water or gases from the exploitation well up to the production platform. Either rigid or flexible types of risers may be used in the oil field. Both types are submitted to a broad spectrum of failure causes [1]: mechanical loads, aging, corrosion, erosion, temperature effects, installation or fabrication nonconformities, and so forth. Therefore, the availability of inspection tools to assess riser integrity status in situ is highly desirable. Such procedures are performed mainly by visual inspection with remotely operated vehicles (ROVs) [2] or autonomous underwater vehicles (AUVs) [3]. In some cases, sensors are installed directly on fixed points of the riser surface to measure strain and riser motion [4]. Other types of nondestructive testing (NDT) techniques can be used, such as magnetic, radiographic, or ultrasound methods [5]. In these cases, however, the operational constraints for using human operators are a major problem. A few papers address robotic devices specifically designed for underwater riser inspection. Psarros and his collaborators [6] proposed a robot that moves along the riser by using a mechanism composed of two parts. One part stays attached to the riser
References
[1]
P. O’Brien and and J. Picksley, “State-of-art flexible riser integrity issues,” Tech. Rep. 2-1-4-181/SR01, 2001, UKOOA by MSC, Rev. 04.
[2]
G. Chapin, “Inspection and monitoring of girassol hybrid riser towers,” in Proceedings of the Offshore Technology Conference (OTC '05), Huston, Tex, USA, 2005, OTC paper no. 17696.
[3]
K. Hamilton and J. Evans, “Subsea pilotless inspection using an autonomous underwater vehicle (SPINAV): concepts and results,” in Proceedings of the OES/IEEE Oceans (OCEANS '05), pp. 775–781, Brest, France, June 2005.
[4]
M. Ordonez, M. O. Sonnaillon, D. Murrin, N. Bose, and W. Qiu, “An advanced measurement system for vortex-induced-vibrations characterization in large-scale risers,” in Proceedings of the MTS/IEEE Conference Oceans (OCEANS '07), pp. 775–781, Vancouver, BC, Canada, 2007.
[5]
E. Veith, C. Bucherie, J. L. Lechien, J. L. Larrouse, and B. Rattoni, “Inspection of offshore flexible riser with electromagnetic and radiographic techniques,” in Proceedings of the 15th World Conference on Nondestructive Testing, pp. 404–408, Rome, Italy, 2000.
[6]
D. Psarros, V. A. Papadimitriou, P. Chatzakos, V. A. Spais, and K. Hrissagis, “A service robot for Subsea flexible risers: analysis and systematic design,” IEEE Robotics and Automation Magazine, vol. 17, no. 1, pp. 55–63, 2010.
[7]
P.-M. Lee, B.-H. Jun, K. Kim, J. Lee, T. Aoki, and T. Hyakudome, “Simulation of an inertial acoustic navigation system with range aiding for an autonomous underwater vehicle,” IEEE Journal of Oceanic Engineering, vol. 32, pp. 327–345, 2007.
[8]
J. Jouffroy and J. Opderbecke, “Underwater vehicle navigation using diffusion-based trajectory observers,” IEEE Journal of Oceanic Engineering, vol. 32, pp. 313–326, 2007.
[9]
C. He, E. Jorge, and L. M. Zurk, “Enhanced kalman filter algorithm using the invariance principle,” IEEE Journal of Oceanic Engineering, vol. 34, no. 4, pp. 575–585, 2009.
[10]
M. F. Santos, L. L. Menegaldo, and M. O. Brito, “An outer device for universal inspectionof risers,” US Patent Application based on Brazilian PI 0705113-1, 2008.
[11]
R. O’Grady, H.-J. Bakkenes, D. Lang, and A. Connaire, “Advancements in response prediction methods for deep water pipe-in-pipe flowline installation,” in Proceedings of the Offshore Technology Conference (OTC '08), Houston, Tex, USA, 2008, OTC paper no. 19400.
[12]
P. J. O'Brien and J. F. McNamara, “Significant characteristics of three-dimensional flexible riser analysis,” Engineering Structures, vol. 54, no. 4, pp. 223–233, 1989.
[13]
D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, Edited by Herts, IEEE, London, UK, 2nd edition, 2004.
[14]
B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Control, Springer, London, UK, 3rd edition, 2009.
[15]
A. L. S. Pinho, Tension reduction in TLP platforms rigid risers, M.S. thesis, Civil Engineering Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 2001.
[16]
C. L. Cunff, F. Biolley, E. Fontaine, S. Etienne, and M. L. Fancchinetti, “Vortex-inducedvibrations of raisers: theoretical, numerical and experimental investigation,” Oil and Gas Science and Technology (IFP), vol. 5, pp. 59–69, 2002.
[17]
M. I. of Technology, “Vortex induced vibration data repository,” 2011, http://oe.mit.edu/VIV/.
[18]
H. I. Weber, “Inertial Systems: basic foundations,” in Proceedings of V SBEIN 5th Brazilian Symposium on Inertial Engineering, Tutorial A, (in Portuguese), Rio de Janeiro,Brazil, 2007.
[19]
W. S. Flenniken IV, Modeling inertial measurement units and analyzing the effect of their errors in navigation applications, M.S. thesis, Auburn University, Auburn, Ala, USA, 2005.
[20]
D. W. Allan, “Statistics of atomic frequency standards,” IEEE Proceedings, vol. 54, pp. 221–230, 1966.
[21]
IEEE, “IEEE Recommended Practice for Inertial Sensor Test Equipment, Instrumentation, Data Acquisition, and Analysis,” IEEE Std 1554-2005, IEEE Aerospace and Electronic Systems Society, 2005.
[22]
B. Jalving, “Depth accuracy in seabed mapping with underwater vehicles,” in Proceedings of the OES/IEEE Oceans (OCEANS '99), pp. 973–978, Seattle, Wash, USA, September 1999.
[23]
D. D. S. Santana, Terrestrial trajectory estimation using a low cost measurement unity and sensor fusion, M.S. thesis, Mechatronic Engineering Department, Polytechnic School, University of Sao Paulo, Sao Paulo, Brazil, 2005.
[24]
H. Qi and J. B. Moore, “Direct Kalman filtering approach for GPS/INS integration,” IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 2, pp. 687–693, 2002.
[25]
T. Sasaki, D. Br??i?, and H. Hashimoto, “Human-observation-based extraction of path patterns for mobile robot navigation,” IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1401–1410, 2010.
[26]
L. L. Menegaldo, G. A. N. Ferreira, M. F. Santos, and R. S. Guerato, “Development and navigation of a mobile robot for floating production storage and offloading ship hull inspection,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3717–3722, 2009.
[27]
S. S. Saad and Z. S. Nakad, “A standalone rfid indoor positioning system using passive tags,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1961–1970, 2011.
[28]
S. H. P. Won, F. Golnaraghi, and W. W. Melek, “A fastening tool tracking system using an IMU and a position sensor with Kalman filters and a fuzzy expert system,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1782–1792, 2009.