|
Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factorsAbstract: We used real-time quantitative PCR to quantify mitochondrial DNA (mtDNA) in bovine oocytes and in various stages of in vitro produced embryos. To investigate the molecular mechanisms responsible for the replication and the transcriptional activation of mtDNA, we quantified the mRNA corresponding to the mtDNA-encoded cytochrome oxidase 1 (COX1), and two nuclear-encoded factors, i.e. the Nuclear Respiratory Factor 1 (NRF1), and the nuclear-encoded Mitochondrial Transcription Factor A (mtTFA).Unlike findings reported in mouse embryos, the mtDNA content was not constant during early bovine embryogenesis. We found a sharp, 60% decrease in mtDNA content between the 2-cell and the 4/8-cell stages. COX1 mRNA was constant until the morula stage after which it increased dramatically. mtTFA mRNA was undetectable in oocytes and remained so until the 8/16-cell stage; it began to appear only at the morula stage, suggesting de novo synthesis. In contrast, NRF1 mRNA was detectable in oocytes and the quantity remained constant until the morula stage.Our results revealed a reduction of mtDNA content in early bovine embryos suggesting an active process of mitochondrial DNA degradation. In addition, de novo mtTFA expression associated with mitochondrial biogenesis activation and high levels of NRF1 mRNA from the oocyte stage onwards argue for the essential function of these factors during the first steps of bovine embryogenesis.Mitochondria, which are maternally inherited organelles, perform several cellular functions, e.g. energetic metabolism, calcium and iron homeostasis, signal transduction, and apoptosis, and play a role in metabolic pathways such as those involved in the biosynthesis of heme, lipids, amino acids and nucleotides [1]. These mitochondrial functions are therefore likely to be critical determinants of early embryonic development at various levels including spindle organization, chromosomal segregation, cell-cycle regulation, and morpho-dynamic processes such as compac
|