|
Lifestyle impact and the biology of the human scrotumAbstract: The exteriorization of the male gonads in a special sac called the scrotum is a uniquely mammalian feature, and one that at first glance requires some explanation. Surely, a trait that would place all of the genetic material essential for procreation in such an exposed situation, rather than protecting it deep within the organism (e.g. like the ovaries) must have some important selective advantage; otherwise why could it evolve and why has it not been selected against. The most plausible evolutionary explanation relates to the requirement of spermatogenesis for an optimum temperature lower than core abdominal temperature [1]. Certainly, the temporary exposure of the adult testes to mild warming (abdominal temperature) leads to marked disruption of spermatogenesis and/or male fertility [2,3]. Testicular descent into a scrotum evolved probably more than 150 million years ago concurrently with the acquisition by ancestral mammals of a regulated hyperthermia [1], which provided the abdominal organs with a controlled, stable body temperature of ca. 36–38°C. It is notable that in many mammals which have reverted to having abdominal testes, either there is a specialized blood supply acting as a heat exchanger to cool the abdominal gonad (e.g. whales), or the core temperature is itself relatively low 34–36°C (e.g. some insectivores) [1]. Although elephants appear to have abdominal testes as a primitive trait, there is recent evidence to suggest that they may have had an aquatic origin in the distant past [4], possibly at a time of early mammalian radiation, when the scrotal trait was not fully established in all mammalian lineages.Why a reduced scrotal temperature has selective advantage is not immediately clear, particularly since a number of animals (such as elephants, hyraxes and reptiles) appear to survive and reproduce with abdominal testes. It is generally assumed that the lower temperature leads to reduced rates of oxidative DNA damage and hence to fewer mutations in
|