全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Automated Fault Location in a Power System with Distributed Generations using Radial basis Function Neural Networks

Keywords: Fault location , Distributed Generation (DG) , power system , Radial Basis Function Neural Network (RBFNN) , perception neural network (MLPNN)

Full-Text   Cite this paper   Add to My Lib

Abstract:

High penetration of Distributed Generation (DG) units will have unfavorable impacts on the traditional fault location methods because the distribution system is no longer radial in nature and is not supplied by a single main power source. This study presents an automated fault location method using Radial Basis Function Neural Network (RBFNN) for a distribution system with DG units. In the proposed method, the fault type is determined first by normalizing the fault currents of the main source. Then to determine the fault location, two RBFNNs have been developed for various fault types. The first RBFNN is used for detraining fault distance from each source and the second RBFNN is used for identifying the exact faulty line. Several case studies have been used to verify the accuracy of the method. Furthermore, the results of RBFNN and the conventional Multi Layer Perception Neural Network (MLPNN) are also compared. The results showed that the proposed method can accurately determine the location of faults in a distribution system with several DG units.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133