DNA-templated few-atom silver nanoclusters (DNA/Ag NCs) are a new class of organic/inorganic composite nanomaterials whose fluorescence emission can be tuned throughout the visible and near-IR range by simply programming the template sequences. Compared to organic dyes, DNA/Ag NCs can be brighter and more photostable. Compared to quantum dots, DNA/Ag NCs are smaller, less prone to blinking on long timescales, and do not have a toxic core. The preparation of DNA/Ag NCs is simple and there is no need to remove excess precursors as these precursors are non-fluorescent. Our recent discovery of the fluorogenic and color switching properties of DNA/Ag NCs have led to the invention of new molecular probes, termed NanoCluster Beacons (NCBs), for DNA detection, with the capability to differentiate single-nucleotide polymorphisms by emission colors. NCBs are inexpensive, easy to prepare, and compatible with commercial DNA synthesizers. Many other groups have also explored and taken advantage of the environment sensitivities of DNA/Ag NCs in creating new tools for DNA/RNA detection and single-nucleotide polymorphism identification. In this review, we summarize the recent trends in the use of DNA/Ag NCs for developing DNA/RNA sensors.
Frazer, K.A.; Ballinger, D.G.; Cox, D.R.; Hinds, D.A.; Stuve, L.L.; Gibbs, R.A.; Belmont, J.W.; Boudreau, A.; Hardenbol, P.; Leal, S.M. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007, 449, 851–861, doi:10.1038/nature06258.
[3]
Budowle, B.; Allard, M.W.; Wilson, M.R.; Chakraborty, R. Forensics and mitochondrial DNA: Applications, debates, and foundations. Ann. Rev. Genom. Hum. Genet. 2003, 4, 119–141, doi:10.1146/annurev.genom.4.070802.110352.
[4]
Pinkel, D.; Segraves, R.; Sudar, D.; Clark, S.; Poole, I.; Kowbel, D.; Collins, C.; Kuo, W.-L.; Chen, C.; Zhai, Y. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 1998, 20, 207–211, doi:10.1038/2524.
[5]
Sozzi, G.; Conte, D.; Mariani, L.; Vullo, S.L.; Roz, L.; Lombardo, C.; Pierotti, M.A.; Tavecchio, L. Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Canc. Res. 2001, 61, 4675–4678.
Raj, A.; van den Bogaard, P.; Rifkin, S.A.; van Oudenaarden, A.; Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Meth. 2008, 5, 877–879.
[8]
Munsky, B.; Neuert, G.; van Oudenaarden, A. Using gene expression noise to understand gene regulation. Science 2012, 336, 183–187, doi:10.1126/science.1216379.
[9]
Taniguchi, Y.; Choi, P.J.; Li, G.-W.; Chen, H.; Babu, M.; Hearn, J.; Emili, A.; Xie, X.S. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 2010, 329, 533–538.
[10]
Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 6, 986–994, doi:10.1101/gr.6.10.986.
[11]
Hunkapiller, T.; Kaiser, R.; Koop, B.; Hood, L. Large-scale and automated DNA sequence determination. Science 1991, 254, 59–67.
[12]
Brown, O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270, 467–470.
[13]
Tyagi, S.; Kramer, F.R. Molecular beacons: Probes that fluoresce upon hybridization. Nat. Biotechnol. 1996, 14, 303–308.
[14]
Kolpashchikov, D.M. Binary malachite green aptamer for fluorescent detection of nucleic acids. J. Am. Chem. Soc. 2005, 127, 12442–12443, doi:10.1021/ja0529788.
[15]
Storhoff, J.J.; Lucas, A.D.; Garimella, V.; Bao, Y.P.; Müller, U.R. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotechnol. 2004, 22, 883–887.
[16]
Holland, P.M.; Abramson, R.D.; Watson, R.; Gelfand, D.H. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 1991, 88, 7276–7280, doi:10.1073/pnas.88.16.7276.
[17]
F?rster, T. Intermolecular Energy Transfer and Fluorescence; National Research Council of Canada: Ottawa, Canada, 1955.
[18]
Stryer, L.; Haugland, R.P. Energy transfer: A spectroscopic ruler. Proc. Natl. Acad. Sci. USA 1967, 58, 719–726, doi:10.1073/pnas.58.2.719.
[19]
Elghanian, R.; Storhoff, J.J.; Mucic, R.C.; Letsinger, R.L.; Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081, doi:10.1126/science.277.5329.1078.
[20]
Sato, K.; Hosokawa, K.; Maeda, M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc. 2003, 125, 8102–8103.
[21]
Li, H.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 14036–14039, doi:10.1073/pnas.0406115101.
[22]
Heller, D.A.; Jeng, E.S.; Yeung, T.K.; Martinez, B.M.; Moll, A.E.; Gastala, J.B.; Strano, M.S. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 2006, 311, 508–511, doi:10.1126/science.1120792.
[23]
Heller, D.A.; Jin, H.; Martinez, B.M.; Patel, D.; Miller, B.M.; Yeung, T.-K.; Jena, P.V.; Hobartner, C.; Ha, T.; Silverman, S.K.; Strano, M.S. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat. Nanotechnol. 2009, 4, 114–120.
[24]
Petty, J.T.; Zheng, J.; Hud, N.V.; Dickson, R.M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 2004, 126, 5207–5212, doi:10.1021/ja031931o.
[25]
Vosch, T.; Antoku, Y.; Hsiang, J.-C.; Richards, C.I.; Gonzalez, J.I.; Dickson, R.M. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl. Acad. Sci. USA 2007, 104, 12616–12621.
Yeh, H.-C.; Sharma, J.; Han, J.J.; Martinez, J.S.; Werner, J.H. A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett. 2010, 10, 3106–3110, doi:10.1021/nl101773c.
[30]
Yeh, H.-C.; Sharma, J.; Han, J.J.; Martinez, J.S.; Werner, J.H. A beacon of light—A new molecular probe for homogeneous detection of nucleic acid targets. IEEE Nanotechnol. Mag. 2011, 5, 28–33.
[31]
Yeh, H.-C.; Sharma, J.; Shih, I.-M.; Vu, D.M.; Martinez, J.S.; Werner, J.H. A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color. J. Am. Chem. Soc. 2012, 134, 11550–11558.
[32]
Guo, W.; Yuan, J.; Dong, Q.; Wang, E. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J. Am. Chem. Soc. 2010, 132, 932–934, doi:10.1021/ja907075s.
[33]
Petty, J.T.; Fan, C.; Story, S.P.; Sengupta, B.; Sartin, M.; Hsiang, J.-C.; Perry, J.W.; Dickson, R.M. Optically enhanced, near-IR, silver cluster emission altered by single base changes in the DNA template. J. Phys. Chem. B 2011, 115, 7996–8003, doi:10.1021/jp202024x.
Sun, T.; Seff, K. Silver clusters and chemistry in zeolites. Chem. Rev. 1994, 94, 857–870.
[42]
De Cremer, G.; Sels, B.F.; Hotta, J.i.; Roeffaers, M.B.; Bartholomeeusen, E.; Couti?o‐Gonzalez, E.; Valtchev, V.; de Vos, D.E.; Vosch, T.; Hofkens, J. Optical encoding of silver zeolite microcarriers. Adv. Mater. 2010, 22, 957–960.
[43]
Lesniak, W.; Bielinska, A.U.; Sun, K.; Janczak, K.W.; Shi, X.; Baker, J.R., Jr.; Balogh, L.P. Silver/dendrimer nanocomposites as biomarkers: Fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett. 2005, 5, 2123–2130.
[44]
Shang, L.; Dong, S.J. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun. 2008, 9, 1088–1090, doi:10.1039/b717728c.
[45]
Ershov, B.G.; Henglein, A. Reduction of Ag+ on polyacrylate chains in aqueous solution. J. Phys. Chem. B 1998, 102, 10663–10666.
[46]
Shen, Z.; Duan, H.W.; Frey, H. Water-soluble fluorescent Ag nanoclusters obtained from multiarm star poly(acrylic acid) as “molecular hydrogel” templates. Adv. Mater. 2007, 19, 349–352, doi:10.1002/adma.200601740.
[47]
Zhang, J.G.; Xu, S.Q.; Kumacheva, E. Photogeneration of fluorescent silver nanoclusters in polymer microgels. Adv. Mater. 2005, 17, 2336–2340.
[48]
Pal, S.; Varghese, R.; Deng, Z.T.; Zhao, Z.; Kumar, A.; Yan, H.; Liu, Y. Site-specific synthesis and in situ immobilization of fluorescent silver nanoclusters on DNA nanoscaffolds by use of the tollens reaction. Angew. Chem. Int. Ed. 2011, 50, 4176–4179.
[49]
Rao, T.U.B.; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem. Int. Ed. 2010, 49, 3925–3929, doi:10.1002/anie.200907120.
[50]
Adhikari, B.; Banerjee, A. Facile synthesis of water-soluble fluorescent silver nanoclusters and HgII sensing. Chem. Mater. 2010, 22, 4364–4371, doi:10.1021/cm1001253.
[51]
Cathcart, N.; Mistry, P.; Makra, C.; Pietrobon, B.; Coombs, N.; Jelokhani-Niaraki, M.; Kitaev, V. Chiral thiol-stabilized silver nanoclusters with well-resolved optical transitions synthesized by a facile etching procedure in aqueous solutions. Langmuir 2009, 25, 5840–5846, doi:10.1021/la9005967.
[52]
Yu, J.; Patel, S.A.; Dickson, R.M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. Int. Ed. 2007, 46, 2028–2030, doi:10.1002/anie.200604253.
[53]
O’Neill, P.R.; Gwinn, E.G.; Fygenson, D.K. UV excitation of DNA stabilized Ag cluster fluorescence via the DNA bases. J. Phys. Chem. C 2011, 115, 24061–24066.
[54]
Yeh, H.C.; Sharma, J.; Yoo, H.; Martinez, J.S.; Werner, J.H. Photophysical characterization of fluorescent metal nanoclusters synthesized using oligonucleotides, proteins and small molecule ligands. Proc. SPIE 2010, 7576, 75760N1–75760N9.
Antoku, Y.; Hotta, J.; Mizuno, H.; Dickson, R.M.; Hofkens, J.; Vosch, T. Transfection of living HeLa cells with fluorescent poly-cytosine encapsulated Ag nanoclusters. Photochem. Photobiol. Sci. 2010, 9, 716–721.
[57]
Le Guevel, X.; Spies, C.; Daum, N.; Jung, G.; Schneider, M. Highly fluorescent silver nanoclusters stabilized by glutathione: A promising fluorescent label for bioimaging. Nano Res. 2012, 5, 379–387.
[58]
Richards, C.I.; Hsiang, J.-C.; Senapati, D.; Patel, S.A.; Yu, J.; Vosch, T.; Dickson, R.M. Optically modulated fluorophores for selective fluorescence signal recovery. J. Am. Chem. Soc. 2009, 131, 4619–4621.
Ritchie, C.M.; Johnsen, K.R.; Kiser, J.R.; Antoku, Y.; Dickson, R.M.; Petty, J.T. Ag nanocluster formation using a cytosine oligonucleotide template. J. Phys. Chem. C 2007, 111, 175–181.
[61]
O’Neill, P.R.; Velazquez, L.R.; Dunn, D.G.; Gwinn, E.G.; Fygenson, D.K. Hairpins with Poly-C loops stabilize four types of fluorescent Agn:DNA. J. Phys. Chem. C 2009, 113, 4229–4233.
[62]
Schultz, D.; Gwinn, E.G. Silver atom and strand numbers in fluorescent and dark Ag:DNAs. Chem. Commun. 2012, 48, 5748–5750, doi:10.1039/c2cc17675k.
[63]
Petty, J.T.; Fan, C.; Story, S.P.; Sengupta, B.; St. John, I.A.; Prudowsky, Z.; Dickson, R.M. DNA encapsulation of 10 silver atoms producing a bright, modulatable, near-infrared-emitting cluster. The J. Phys. Chem. Lett. 2010, 1, 2524–2529.
[64]
Petty, J.T.; Giri, B.; Miller, I.C.; Nicholson, D.A.; Sergev, O.O.; Banks, T.M.; Story, S.P. Silver clusters as both chromophoric reporters and DNA ligands. Anal. Chem. 2013, 85, 2183–2190, doi:10.1021/ac303531y.
[65]
Yu, J.H.; Choi, S.M.; Richards, C.I.; Antoku, Y.; Dickson, R.M. Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem. Photobiol. 2008, 84, 1435–1439, doi:10.1111/j.1751-1097.2008.00434.x.
Guo, W.; Yuan, J.; Wang, E. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem. Commun. 2009, 3395–3397.
[69]
Lan, G.Y.; Huang, C.C.; Chang, H.T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem. Commun. 2010, 46, 1257–1259, doi:10.1039/b920783j.
[70]
Sharma, J.; Yeh, H.C.; Yoo, H.; Werner, J.H.; Martinez, J.S. Silver nanocluster aptamers: In situ generation of intrinsically fluorescent recognition ligands for protein detection. Chem. Commun. 2011, 47, 2294–2296.
[71]
Li, J.; Zhong, X.; Zhang, H.; Le, X.C.; Zhu, J.J. Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes. Anal. Chem. 2012, 84, 5170–5174.
[72]
Liu, J.J.; Song, X.R.; Wang, Y.W.; Zheng, A.X.; Chen, G.N.; Yang, H.H. Label-free and fluorescence turn-on aptasensor for protein detection via target-induced silver nanoclusters formation. Anal. Chim. Acta 2012, 749, 70–74, doi:10.1016/j.aca.2012.09.002.
[73]
Seidel, C.A.M.; Schulz, A.; Sauer, M.H.M. Nucleobase-specific quenching of fluorescent dyes. 1. nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J. Phys. Chem. 1996, 100, 5541–5553, doi:10.1021/jp951507c.
[74]
Knemeyer, J.P.; Marme, N.; Sauer, M. Probes for detection of specific DNA sequences at the single-molecule level. Anal. Chem. 2000, 72, 3717–3724, doi:10.1021/ac000024o.
[75]
Heinlein, T.; Knemeyer, J.-P.; Piestert, O.; Sauer, M.H.M. Photoinduced electron transfer between fluorescent dyes and guanosine residues in DNA-hairpins. J. Phys. Chem. B 2003, 107, 7957–7964.
[76]
Zhang, M.; Guo, S.M.; Li, Y.R.; Zuo, P.; Ye, B.C. A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase. Chem. Commun. 2012, 48, 5488–5490, doi:10.1039/c2cc31626a.
[77]
Kostrikis, L.G.; Tyagi, S.; Mhlanga, M.M.; Ho, D.D.; Kramer, F.R. Molecular beacons-spectral genotyping of human alleles. Science 1998, 279, 1228–1229.
[78]
Park, S.J.; Taton, T.A.; Mirkin, C.A. Array-based electrical detection of DNA with nanoparticle probes. Science 2002, 295, 1503–1506.
[79]
Subramanian, H.K.K.; Chakraborty, B.; Sha, R.; Seeman, N.C. The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami. Nano Lett. 2011, 11, 910–913, doi:10.1021/nl104555t.
[80]
Petty, J.T.; Sengupta, B.; Story, S.P.; Degtyareva, N.N. DNA sensing by amplifying the number of near-infrared emitting, oligonucleotide-encapsulated silver clusters. Anal. Chem. 2011, 83, 5957–5964.
[81]
Lan, G.Y.; Chen, W.Y.; Chang, H.T. One-pot synthesis of fluorescent oligonucleotide Ag nanoclusters for specific and sensitive detection of DNA. Biosens. Bioelectron. 2011, 26, 2431–2435.
[82]
Shah, P.; R?rvig-Lund, A.; Chaabane, S.B.; Thulstrup, P.W.; Kjaergaard, H.G.; Fron, E.; Hofkens, J.; Yang, S.W.; Vosch, T. Design aspects of bright red emissive silver nanoclusters/DNA probes for microRNA detection. ACS Nano 2012, 6, 8803–8814.
[83]
He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Func. Mater. 2010, 20, 453–459, doi:10.1002/adfm.200901639.
[84]
Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024, doi:10.1038/nchem.907.
[85]
Tao, Y.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X. DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: A platform for label-free and sensitive fluorescence turn-on detection of multiple nucleic acid targets. Analyst 2012, 137, 2588–2592.
[86]
Ma, K.; Cui, Q.; Liu, G.; Wu, F.; Xu, S.; Shao, Y. DNA abasic site-directed formation of fluorescent silver nanoclusters for selective nucleobase recognition. Nanotechnology 2011, 22, 305502, doi:10.1088/0957-4484/22/30/305502.
[87]
Liu, Y.Q.; Zhang, M.; Yin, B.C.; Ye, B.C. Attomolar ultrasensitive microRNA detection by DNA-scaffolded silver-nanocluster probe based on isothermal amplification. Anal. Chem. 2012, 84, 5165–5169.
[88]
Yang, S.W.; Vosch, T. Rapid detection of microRNA by a silver nanocluster DNA probe. Anal. Chem. 2011, 83, 6935–6939, doi:10.1021/ac201903n.
Wells, N.P.; Lessard, G.A.; Goodwin, P.M.; Phipps, M.E.; Cutler, P.J.; Lidke, D.S.; Wilson, B.S.; Werner, J.H. Time-resolved three-dimensional molecular tracking in live cells. Nano Lett. 2010, 10, 4732–4737, doi:10.1021/nl103247v.
[94]
Han, J.J.; Kiss, C.; Bradbury, A.R.M.; Werner, J.H. Time-resolved, confocal single-molecule tracking of individual organic dyes and fluorescent proteins in three dimensions. ACS Nano 2012, 6, 8922–8932.
[95]
Han, M.; Gao, X.; Su, J.Z.; Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631–635, doi:10.1038/90228.