全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biomolecules  2013 

Overcoming Challenges and Opening New Opportunities in Glycoproteomics

DOI: 10.3390/biom3020270

Keywords: glycoproteomics, N-linked glycosites, hydrazide-modified magnetic beads, Orbitrap, tandem mass spectrometry, 18O labeling, deamidation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Glycoproteomics has emerged as a prime area of interest within the field of proteomics because glycoproteins have been shown to function as biomarkers for disease and as promising therapeutic targets. A significant challenge in the study of glycoproteins is the fact that they are expressed in relatively low abundance in cells. In response, various enrichment methods have been developed to improve the detection of glycoproteins. One such method involves their capture via oxidation of their glycan chains and covalent attachment with hydrazide resins which, when catalyzed by PNGase F, release N-linked glycans and convert the glycosite Asn to Asp; this conversion is identifiable with LC/ESI-MS/MS as a corresponding increase of 0.984 Da in molecular weight. The present study builds on this body of work, providing evidence of three additional strategies that improve glycoprotein identification: (1) use of a high resolution mass spectrometer—the Q Exactive MS—which delivers 2–3 times more glycoprotein identifications than a low resolution MS; (2) optimization of instrument settings and database search parameters to reduce misidentification of N-linked glycopeptides to ~1 percent; and (3) labeling glycopeptides with 18O during PNGase F treatment to locate N-linked glycosites within peptides containing multiple N-linked sequons.

References

[1]  Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422, 198–207, doi:10.1038/nature01511.
[2]  Cravatt, B.F.; Simon, G.M.; Yates, J.R., 3rd. The biological impact of mass-spectrometry-based proteomics. Nature 2007, 450, 991–1000, doi:10.1038/nature06525.
[3]  Andersen, J.S.; Mann, M. Organellar proteomics: Turning inventories into insights. EMBO Rep. 2006, 7, 874–879, doi:10.1038/sj.embor.7400780.
[4]  Pan, S.; Chen, R.; Aebersold, R.; Brentnall, T.A. Mass spectrometry based glycoproteomics--from a proteomics perspective. Mol. Cell. Proteomics 2011, 10, R110.003251, doi:10.1074/mcp.R110.003251.
[5]  Anderson, N.L.; Anderson, N.G. The human plasma proteome. Mol. Cell. Proteomics 2002, 1, 845–867, doi:10.1074/mcp.R200007-MCP200.
[6]  Anderson, N.L. The clinical plasma proteome: A survey of clinical assays for proteins in plasma and serum. Clin. Chem. 2010, 56, 177–185, doi:10.1373/clinchem.2009.126706.
[7]  Thaysen-Andersen, M.; Packer, N.H. Site-Specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching. Glycobiology 2012, 22, 1440–1452, doi:10.1093/glycob/cws110.
[8]  Ramachandran, P.; Boontheung, P.; Xie, Y.; Sondej, M.; Wong, D.T.; Loo, J.A. Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. J. Proteome Res. 2006, 5, 1493–1503, doi:10.1021/pr050492k.
[9]  Tu, C.; Rudnick, P.A.; Martinez, M.Y.; Cheek, K.L.; Stein, S.E.; Slebos, R.J.; Liebler, D.C. Depletion of abundant plasma proteins and limitations of plasma proteomics. J. Proteome Res. 2010, 9, 4982–4991, doi:10.1021/pr100646w.
[10]  Chen, R.; Jiang, X.; Sun, D.; Han, G.; Wang, F.; Ye, M.; Wang, L.; Zou, H. Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J. Proteome Res. 2009, 8, 651–661, doi:10.1021/pr8008012.
[11]  Gonzalez, J.; Takao, T.; Hori, H.; Besada, V.; Rodriguez, R.; Padron, G.; Shimonishi, Y. A method for determination of N-glycosylation sites in glycoproteins by collision-induced dissociation analysis in fast atom bombardment mass spectrometry: Identification of the positions of carbohydrate-linked asparagine in recombinant alpha-amylase by treatment with peptide-N-glycosidase F in 18O-labeled water. Anal. Biochem. 1992, 205, 151–158, doi:10.1016/0003-2697(92)90592-U.
[12]  Wright, T.H. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in protein. Crit. Rev. Biochem. Mol. Biol. 1991, 26, 1–52, doi:10.3109/10409239109081719.
[13]  Palmisano, G.; Melo-Braga, M.N.; Engholm-Keller, K.; Parker, B.L.; Larsen, M.R. Chemical deamidation: A common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. J. Proteome Res. 2012, 11, 1949–1957, doi:10.1021/pr2011268.
[14]  Hao, P.; Ren, Y.; Alpert, A.J.; Sze, S.K. Detection, evaluation and minimization of nonenzymatic deamidation in proteomic sample preparation. Mol. Cell. Proteomics 2011, 10, O111.009381.
[15]  Robinson, N.E.; Robinson, A.B. Molecular clocks. Proc. Natl. Acad. Sci. USA 2001, 98, 944–949, doi:10.1073/pnas.98.3.944.
[16]  Kuster, B.; Mann, M. 18O-Labeling of N-glycosylation sites to improve the identification of gel-separated glycoproteins using peptide mass mapping and database searching. Anal. Chem. 1999, 71, 1431–1440, doi:10.1021/ac981012u.
[17]  Zhang, H.; Li, X.J.; Martin, D.B.; Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotech. 2003, 21, 660–666, doi:10.1038/nbt827.
[18]  McDonald, C.A.; Yang, J.Y.; Marathe, V.; Yen, T.Y.; Macher, B.A. Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol. Cell. Proteomics 2009, 8, 287–301.
[19]  Arcinas, A.; Yen, T.Y.; Kebebew, E.; Macher, B.A. Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns. J. Proteome Res. 2009, 8, 3958–3968, doi:10.1021/pr900278c.
[20]  Yen, T.Y.; Macher, B.A.; McDonald, C.A.; Alleyne-Chin, C.; Timpe, L.C. Glycoprotein profiles of human breast cells demonstrate a clear clustering of normal/benign versus malignant cell lines and basal versus luminal cell lines. J. Proteome Res. 2012, 11, 656–667, doi:10.1021/pr201041j.
[21]  Zou, Z.; Ibisate, M.; Zhou, Y.; Aebersold, R.; Xia, Y.; Zhang, H. Synthesis and evaluation of superparamagnetic silica particles for extraction of glycopeptides in the microtiter plate format. Anal. Chem. 2008, 80, 1228–1234, doi:10.1021/ac701950h.
[22]  Michalski, A.; Damoc, E.; Hauschild, J.P.; Lange, O.; Wieghaus, A.; Makarov, A.; Nagaraj, N.; Cox, J.; Mann, M.; Horning, S. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell. Proteomics 2011, 10, M111.011015, doi:10.1074/mcp.M111.011015.
[23]  Johnson, R.S.; Martin, S.A.; Biemann, K.; Stults, J.T.; Watson, J.T. Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: Differentiation of leucine and isoleucine. Anal. Chem. 1987, 59, 2621–2625, doi:10.1021/ac00148a019.
[24]  Schwartz, J.C.; Senko, M.W.; Syka, J.E.P. A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 659–669, doi:10.1016/S1044-0305(02)00384-7.
[25]  Boersema, P.J.; Geiger, T.; Wi?niewski, J.R.; Mann, M. Quantification of the N-glycosylated secretome by super-SILAC during breast cancer progression and in human blood samples. Mol. Cell. Proteomics 2012, 12, 158–171.
[26]  Drake, P.M.; Schilling, B.; Niles, R.K.; Prakobphol, A.; Li, B.; Jung, K.; Cho, W.; Braten, M.; Inerowicz, H.D.; Williams, K.; et al. Lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers. J. Proteome Res. 2012, 11, 2508–2520, doi:10.1021/pr201206w.
[27]  Zhang, Y.; Wen, Z.; Washburn, M.P.; Florens, L. Effect of dynamic exclusion duration on spectral count based quantitative proteomics. Anal. Chem. 2009, 81, 6317–6326, doi:10.1021/ac9004887.
[28]  Perkins, D.N.; Pappin, D.J.; Creasy, D.M.; Cottrell, J.S. Probability-Based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551–3567, doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2.
[29]  Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646–4658, doi:10.1021/ac0341261.
[30]  Keller, A.; Nesvizhskii, A.I.; Kolker, E.; Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002, 74, 5383–5392, doi:10.1021/ac025747h.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133