全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2013 

A Study on Graphene—Metal Contact

DOI: 10.3390/cryst3010257

Keywords: graphene, field-effect transistor, contact resistance, Raman

Full-Text   Cite this paper   Add to My Lib

Abstract:

The contact resistance between graphene and metal electrodes is crucial for the achievement of high-performance graphene devices. In this study, we review our recent study on the graphene–metal contact characteristics from the following viewpoints: (1) metal preparation method; (2) asymmetric conductance; (3) annealing effect; (4) interfaces impact.

References

[1]  Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669, doi:10.1126/science.1102896.
[2]  Zhang, Y.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.
[3]  Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191, doi:10.1038/nmat1849.
[4]  Chen, Z.; Lin, Y.M.; Rooks, M.J.; Avouris, Ph. Graphene nano-ribbon electronics. Phys. E 2007, 40, 228–232, doi:10.1016/j.physe.2007.06.020.
[5]  Schedin, F.; Geim, A.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655, doi:10.1038/nmat1967.
[6]  Lemme, M.C.; Echtermeyer, T.J.; Baus, M.; Kurz, H. A graphene field-effect device. IEEEElectron. Dev. Lett. 2007, 28, 282–284, doi:10.1109/LED.2007.891668.
[7]  Murali, R.; Yang, Y.X.; Brenner, K.; Beck, T.; James, D.M. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 243114:1–243114:3.
[8]  Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232, doi:10.1126/science.1150878.
[9]  Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.
[10]  Lin, Y.M.; Dimitrakopoulos, C.; Jenkins, K.A.; Farmer, D.B.; Chiu, H.Y.; Grill, A.; Avouris, Ph. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662, doi:10.1126/science.1184289.
[11]  Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496, doi:10.1038/nnano.2010.89.
[12]  Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Fundenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.
[13]  Fan, X.Y.; Nouchi, R.; Yin, L.C.; Tanigaki, K. Effects of electron-transfer chemical modification on the electrical characteristics of graphene. Nanotechnology 2010, 21, 475208:1–475208:5.
[14]  Hong, S.K.; Kim, J.E.; Kim, S.O.; Choi, S.Y.; Cho, B.J. Flexible resistive switching memory device based on graphene oxide. IEEE Electron. Dev. Lett. 2010, 31, 1005–1007, doi:10.1109/LED.2010.2053695.
[15]  Jeong, H.Y.; Yun, J.; Kim, J.Y.; Hwang, J.O.; Kim, J.E.; Lee, J.Y.; Yoon, T.H.; Cho, B.J.; Kim, S.O.; Ruoff, R.S.; et al. Graphene oxide thin films for flexiblenonvolatile memory applications. Nano Lett. 2010, 10, 4381–4386, doi:10.1021/nl101902k.
[16]  Eda, G.; Lin, Y.Y.; Miller, S.; Chen, C.W.; Su, W.F.; Chhowalla, M. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 2008, 92, 233305:1–233305:3.
[17]  Yan, X.; Cui, X.; Li, B.; Li, L.S. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 2010, 10, 1869–1873, doi:10.1021/nl101060h.
[18]  Nagashio, K.; Nishimura, T.; Kita, K.; Toriumi, A. Metal/Graphene Contact as a Performance Killer of Ultra-high Mobility Graphene—Analysis of Intrinsic Mobility and Contact Resistance. In Presented at the International Electron Devices Meeting, Washington DC, USA, 7–9 December 2009.
[19]  Nagashio, K.; Nishimura, T.; Kita, K.; Toriumi, A. Contact resistivity and current flow path at metal/graphene contact. Appl. Phys. Lett. 2010, 97, 143514:1–143514:3.
[20]  Venugopal, A.; Colombo, L.; Vogel, E.M. Contact resistance in few and multilayer graphene devices. Appl. Phys. Lett. 2010, 96, 013512:1–013512:3.
[21]  Xia, F.; Perebeions, V.; Lin, Y.M.; Wu, Y.Q.; Avouris, Ph. The origins and limits of metal graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179–184.
[22]  Watanabe, E.; Conwill, A.; Tsuya, D.; Koide, Y. Low contact resistance metals for graphene based devices. Diam. Relat. Mater. 2012, 24, 171–174, doi:10.1016/j.diamond.2012.01.019.
[23]  Huard, B.; Stander, N.; Sulpizio, J.A.; Goldhber-Gordon, D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys. Rev. B 2008, 78, 121402:1–121402:4.
[24]  Liu, W.; Li, M.; Xu, S.; Zhang, Q.; Pey, K.L.; Hu, H.; Shen, Z.; Zou, X.; Wang, J.; Wei, J.; et al. Understanding the Contact Characteristics in Single or Multi-Layer Graphene Devices: The Impact of Defects (Carbon Vacancies) and the Asymmetric Transportation Behavior. In Presented at the International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010.
[25]  Dai, H. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 2002, 500, 218–241, doi:10.1016/S0039-6028(01)01558-8.
[26]  Blake, P.; Yanga, R.; Morozova, S.V.; Schedin, F.; Ponomarenkoa, L.A.; Zhukova, A.A.; Nair, R.R.; Grigorieva, I.V.; Novoselov, K.S.; Geim, A.K. Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun. 2009, 149, 1068–1071, doi:10.1016/j.ssc.2009.02.039.
[27]  Liu, W.J.; Yu, H.Y.; Wei, J.; Li, M.F. Impact of process induced defects on the contact characteristics of ti/graphene devices. Electrochem. Solid State Lett. 2011, 14, K67–K69, doi:10.1149/2.014112esl.
[28]  Magna, L.; Deretzis, I. Theoretical study of the role of metallic contacts in probing transport features of pure and defected graphene nanoribbons. Nanoscale. Res. Lett. 2011, 6, 234:1–234:5.
[29]  Seol, G.; Guo, J. Metal contact to graphene nanoribbon. Appl. Phy. Lett. 2012, 100, 063108:1–063108:4.
[30]  Russo, S.; Craciun, M.F.; Yamamoto, M.; Morpurgo, A.F.; Tarucha, S. Contact resistance in graphene-based devices. Physica E 2010, 42, 677–679, doi:10.1016/j.physe.2009.11.080.
[31]  Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cancado, L.G.; Jorioa, A.; Saitoe, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291, doi:10.1039/b613962k.
[32]  Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401:1–187401:4.
[33]  Ni, Z.H.; Wang, H.M.; Kasim, J.; Fan, H.M.; Yu, T.; Wu, Y.H.; Peng, Y.P.; Shen, Z.X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763, doi:10.1021/nl071254m.
[34]  Wang, Y.Y.; Ni, Z.H.; Yu, T.; Shen, Z.X.; Wang, H.M.; Wu, Y.H.; Chen, W.; Wee, A. Raman studies of monolayer graphene: The substrate effect. J. Phys. Chem. C 2008, 112, 10637–10640.
[35]  Ni, Z.H.; Wang, H.M.; Ma, Y.; Kasim, J.; Wu, Y.H.; Shen, Z.X. tunable stress and controlled thickness modification in graphene by annealing. ACS Nano 2008, 2, 1033–1039, doi:10.1021/nn800031m.
[36]  Liu, W.; Tran, X.; Liu, X.; Wei, J.; Yu, H.; Sun, X. Characteristics of a single-layer graphene field effect transistor with UV/Ozone treatment. Electrochem. Solid State Lett. 2013, 2, M1–M4.
[37]  Xu, C.H.; Fu, C.L.; Pedraza, D.F. Simulation of point-defect properties in graphite by a tight-binding-force model. Phys. Rev. B 1993, 48, 13273–13279, doi:10.1103/PhysRevB.48.13273.
[38]  El-Barbary, A.; Telling, R.H.; Ewels, C.P.; Heggie, M.I.; Briddon, P.R. Structure and energetics of the vacancy in graphite. Phys. Rev. B 2003, 68, 144107:1–144107:7.
[39]  Yan, J.; Zhang, Y.B.; Kim, P.; Pinczuk, A. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 2007, 98, 166802:1–166802:4.
[40]  Ni, Z.; Yu, T.; Luo, Z.; Wang, Y.; Liu, L.; Wong, C.; Miao, J.; Huang, W.; Shen, Z. Probing charged impurities in suspended graphene using raman spectroscopy. ACS Nano 2009, 3, 569–574, doi:10.1021/nn900130g.
[41]  Mohiuddin, T.M.G.; Lombardo, A.; Nair, R.R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D.M.; Gailiotis, C.; Marzari, N.; et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phy. Rev. B 2009, 79, 205433:1–205433:8.
[42]  Ni, Z.H.; Yu, T.; Lu, Y.H.; Wang, Y.Y.; Feng, Y.P.; Shen, Z.X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301–2305, doi:10.1021/nn800459e.
[43]  Chen, J.H.; Cullen, W.G.; Jang, C.; Fuhrer, M.S.; Williams, E.D. Defect scattering in graphene. Phys. Rev. Lett. 2009, 102, 236805:1–236805:4.
[44]  Ni, Z.H.; Ponomarenko, L.A.; Nair, R.R.; Yang, R.; Anissimova, S.; Grigorieva, I.V.; Schedin, F.; Blake, P.; Shen, Z.X.; Hill, E.H.; et al. On resonant scatterers as a factor limitingcarrier mobility in graphene. Nano Lett. 2010, 10, 3868–3872, doi:10.1021/nl101399r.
[45]  Lahiri, J.; Batzilla, M. Graphene destruction by metal-carbide formation: An approach for patterning of metal-supported graphene. Appl. Phys. Lett. 2010, 97, 023102:1–023102:3.
[46]  Li, H.; Zhang, Q.; Liu, C.; Xu, S.H.; Gao, P.Q. Ambipolar to unipolar conversion in graphene field-effect transistors. ACS Nano 2011, 5, 3198–3203, doi:10.1021/nn200327q.
[47]  Nagashio, K.; Toriumi, A. Density-of-states limited contact resistance in graphene field-effect transistors. Jpn. J. Appl. Phys. 2011, 50, 070108:1–070108:6.
[48]  Berdebes, D.; Low, T.; Sui, Y.; Appenzeller, J.; Lundstrom, M.S. Substrate gating of contact resistance in graphene transistors. IEEE Trans. Electron. Dev. 2011, 58, 3925–3932.
[49]  Giovannetti, G.; Khomyakov, P.A.; Brocks, G.; Karpan, V.M.; Brink, J.; Kelly, P.J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803:1–026803:4.
[50]  Khomyakov, P.A.; Giovannetti, G.; Rusu, P.C.; Brocks, G.; Brink, J.; Kelly, P.J. First-Principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425:1–195425:12.
[51]  Mueller, T.; Xia, F.; Freitag, M.; Tsang, J.; Avouris, Ph. Role of contacts in graphene transistors: A scanning photocurrent study. Phys. Rev. B 2009, 79, 245430:1–245430:6.
[52]  Xia, F.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y.M.; Tsang, J.; Perebeinos, V.; Avouris, Ph. Photocurrent imaging and efficientphoton detection in a graphene transistor. Nano Lett. 2009, 9, 1039–1044, doi:10.1021/nl8033812.
[53]  Lee, E.J.H.; Balasubramanian, K.; Weitz, R.; Burghard, M.; Kern, K. Contact and edge effects in graphene devices. Nat. Nanotech. 2008, 3, 486–490.
[54]  Farmer, D.B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y.M.; Tulevski, G.S.; Tsang, J.C.; Avouris, Ph. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett. 2009, 9, 388–392, doi:10.1021/nl803214a.
[55]  Liu, W.J.; Yu, H.Y.; Xu, S.H.; Zhang, Q.; Zou, X.; Wang, J.L.; Pey, K.L.; Wei, J.; Zhu, H.L.; Li, M.F. Understanding asymmetric transportation behavior in graphene devices using scanning kelvin probe microscopy. IEEE Electron. Dev. Lett. 2011, 32, 128–131, doi:10.1109/LED.2010.2093500.
[56]  Wang, F.; Zhang, Y.; Tian, C.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y.R. Gate-variable optical transitions in graphene. Science 2008, 320, 206–209, doi:10.1126/science.1152793.
[57]  Zhao, P.; Zhang, Q.; Jena, D.; Koswatta, S.O. Influence of metal-graphene contact on the operation and scalability of graphene field-effect transistors. IEEE Trans. Electron. Dev. 2011, 58, 3170–3178, doi:10.1109/TED.2011.2159507.
[58]  Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107, doi:10.1103/PhysRevB.61.14095.
[59]  Elias, D.C.; Nair, R.R.; Moiuddin, T.M.G.; Morozov, S.V.; Blake, P.; Phalsall, M.; Ferrari, A.C.; Boukhvalov, D.W.; Kastsnelson, M.I.; Geim, A.K.; et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613, doi:10.1126/science.1167130.
[60]  Ni, Z.H.; Wang, M.H.; Luo, Z.Q.; Wang, Y.Y.; Yu, T.; Wu, Y.H.; Shen, Z.X. The effect of vacuum annealing on graphene. J. Raman Spectrosc. 2010, 41, 479–483.
[61]  Liu, W.J.; Sun, X.W.; Fang, Z.; Wang, Z.R.; Tran, X.A.; Wang, F.; Wu, L.; Ng, G.I.; Zhang, J.F.; Wei, J.; et al. Positive bias-induced Vth instability in single layer graphene field transistors. IEEE Electron. Dev. Lett. 2012, 33, 339–341, doi:10.1109/LED.2011.2181150.
[62]  Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K.S.; Geim, A.K.; Ferrari, A.C.; Mauri, F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201, doi:10.1038/nmat1846.
[63]  Liu, W.J.; Sun, X.W.; Tran, X.A.; Fang, Z.; Wang, Z.R.; Wang, F.; Wu, L.; Zhang, J.F.; Wei, J.; Zhu, H.L.; et al. Vth shift in single layer graphene field effect transistors and its correlation with raman inspection. IEEE Trans. Dev. Mater. Reliab. 2012, 12, 478–481, doi:10.1109/TDMR.2012.2190414.
[64]  Balci, O.; Kocabas, C. Rapid thermal annealing of graphene-metal contact. Appl. Phys. Lett. 2012, 101, 243105:1–243105:5.
[65]  Song, S.M.; Cho, B.J. Investigation of interaction between graphene and dielectrics. Nanotechnology 2010, 21, 335706:1–335706:6.
[66]  Nagashio, K.; Yamashita, T.; Fujita, J.; Nishimura, T.; Kita, K.; Toriumi, A. Impacts of Graphene/SiO2 Interaction on FET Mobility and Raman Spectra in Mechanically Exfoliated Graphene Films. In Presented at the International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010.
[67]  Nagashio, K.; Yamashita, T.; Fujita, J.; Nishimura, T.; Kita, K.; Toriumi, A. Electrical transport properties of graphene on SiO2 with specific surface structures. J. Appl. Phys. 2011, 110, 024513:1–024513:6.
[68]  Casiraghi, C.; Pisana, S.; Novoselov, K.S.; Geim, A.K.; Ferrari, A.C. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 2007, 91, 233108:1–233108:3.
[69]  Robinson, J.A.; Bella, M.; Zhu, M.; Hollander, M.; Kasarda, R.; Hughes, Z.; Trumbull, K.; Cavalero, K.; Snyder, D. Contacting graphene. Appl. Phys. Lett. 2011, 98, 053103:1–053103:3.
[70]  Bartolomeo, A.; Giubileo, F.; Santandrea, S.; Romeo, F.; Citro, R.; Schroeder, T.; Lupina, G. Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors. Nanotechnology 2011, 22, 275702:1–275702:8.
[71]  Nouchi, R.; Tanigaki, K. Charge-Density depinning at metal contacts of graphene field-effect transistors. Appl. Phys. Lett. 2010, 96, 253503:1–253503:3.
[72]  Nagashio, K.; Moriyama, T.; Ifuku, R.; Yamashita, T.; Nishimura, T.; Toriumi, A. Is Graphene Contacting with Metal Still Graphene? In Presented at the International Electron Devices Meeting, Washington DC, USA, 5–7 December 2011.
[73]  Chen, Z.; Appenzeller, J. Gate Modulation of Graphene Contacts—On the Scaling of Graphene FETs. In Presented at the Proceeding of VLSI Tech, Honolulu, Hawaii, HI, USA, 17–19 June 2008.
[74]  Song, S.M.; Park, J.K.; Sul, O.J.; Cho, B.J. Determination of work function of graphene under a metalelectrode and its role in contact resistance. Nano Lett. 2012, 12, 3887–3892.
[75]  Hsu, A.; Wang, H.; Kim, K.K.; Kong, J.; Palacios, T. Impact of graphene interface quality on contactresistance and RF device performance. IEEE Electron. Dev. Lett. 2011, 32, 1008–1010, doi:10.1109/LED.2011.2155024.
[76]  Nagashio, K.; Ifuku, R.; Moriyama, T.; Yamashita, T.; Nishimura, T.; Toriumi, A. Intrinsic Graphene/Metal Contact. In Presented at the International Electron Devices Meeting, San Francisco, CA, USA, 10–12 December 2012.
[77]  Oshimay, C.; Nagashimaz, A. Ultra-Thin epitaxial films of graphite and hexagonal boronnitride on solid surfaces. J. Phys. Condens. Matter 1997, 9, 1–20, doi:10.1088/0953-8984/9/1/004.
[78]  Matsuda, Y.; Deng, W.Q.; Goddard, W.A., III. Contact resistance for “End-Contacted” metal-graphene and metal-nanotube interfacesfrom quantum mechanics. J. Phys. Chem. C 2010, 114, 17845–17850, doi:10.1021/jp806437y.
[79]  Gong, C.; Hinojos, D.; Wang, W.C.; Nijem, N.; Shan, B.; Wallace, R.M.; Cho, K.; Chabal, Y.J. Metal-Graphene-Metal sandwich contacts for enhanced interface bonding and work function control. ACS Nano 2012, 6, 5381–5387.
[80]  Franklin, A.D.; Han, S.J.; Bol, A.A.; Perebeinos, V. Double contacts for improved performance of graphene transistors. IEEE Electron. Dev. Lett. 2012, 33, 17–19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133