Graphene, a single atomic layer of graphite, has been a material of recent intensive studies due to its novel electronic and structural properties and its potential applications in the emerging area of carbon-based electronic devices. Metal on graphene growth is one of the current research interests, aiming at improving and manipulating the electronic and magnetic properties of graphene through metal atom adsorption or doping to meet various requirements in device applications. In this paper, we will give an overview of recent experimental and computational investigation of interaction, growth morphology, and thermal stability of various metals on graphene grown on 6H-SiC(0001) substrate.
References
[1]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonoset, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
[2]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.
[3]
Zhang, Y.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204, doi:10.1038/nature04235.
[4]
Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907, doi:10.1021/nl0731872.
[5]
Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.
[6]
Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162, doi:10.1103/RevModPhys.81.109.
[7]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191, doi:10.1038/nmat1849.
[8]
Das Sarma, S.; Adam, S.; Hwang, E.H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470, doi:10.1103/RevModPhys.83.407.
Virojanadara, C.; Watcharinyanon, S.; Zakharov, A.A.; Johansson, L.I. Epitaxial graphene on 6H-SiC and Li intercalation. Phys. Rev. B 2010, 82, 205402:1–205402:6.
[12]
Caragiu, M.; Finberg, S. Alkali metal adsorption on graphite: A review. J. Phys. Condens. Matter 2005, 17, R995–R1024, doi:10.1088/0953-8984/17/35/R02.
[13]
Ferralis, N.; Pussi, K.; Finberg, S.E.; Smerdon, J.; Lindroos, M.; McGrath, R.; Diehl, R.D. Low-energy electron diffraction study of potassium adsorbed on single-crystal graphite and high oriented pyrolytic graphite. Phys. Rev. B 2004, 70, 245407:1–245407:6.
[14]
Renard, J.; Lundeberg, M.B.; Folk, J.A.; Pennec, Y. Real-time imaging of K atoms on graphite: Interactions and diffusion. Phys. Rev. Lett. 2011, 106, 156101:1–156101:4.
[15]
Knudsen, J.; Feibelman, P.J.; Gerber, T.; Gr?n?s, E.; Schulte, K.; Stratmann, P.; Andersn, J.N.; Michely, T. Clusters binding to the graphene moiré on Ir(111): X-ray photoemission compared to density functional calculations. Phys. Rev. B 2012, 85, 035407:1–035407:6.
[16]
N’Diaye, A.T.; Gerber, T.; Busse, C.; Myslive?ek, J.; Coraux, J.; Michely, T. A versatile fabrication method for cluster superlattices. New J. Phys. 2009, 11, 103045:1–103045:19.
[17]
Zhou, Z.; Gao, F.; Goodman, D.W. Deposition of metal clusters on single-layer graphene/Ru(0001): Factors that govern cluster growth. Surf. Sci. 2010, 604, L31–L38, doi:10.1016/j.susc.2010.03.008.
[18]
Park, S.; Shao, Y.; Wan, H.; Rieke, P.C.; Viswanathan, V.V.; Towne, S.A.; Saraf, L.V.; Liu, J.; Lin, Y.; Wang, Y. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochem. Commun. 2011, 13, 258–261, doi:10.1016/j.elecom.2010.12.028.
[19]
Cretu, O.; Rodríguez-Manzo, J.A.; Demortière, A.; Banhart, F. Electron beam-induced formation and displacement of metal clusters on graphene, carbon nanotubes and amorphous carbon. Carbon 2012, 50, 259–264, doi:10.1016/j.carbon.2011.08.043.
Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K.S. Evolution of gold nanostructures on graphene. Small 2011, 20, 2868–2872.
[22]
Xu, Y.; Semidey-Flecha, L.; Liu, L.; Zhou, Z.; Goodman, D.W. Exploring the structure and chemical activity of 2-D gold islands on graphene moiré/Ru(0001). Faraday Discuss. 2011, 152, 267–276, doi:10.1039/c1fd00030f.
[23]
Aton, R.; Kreutzer, P. In situ TEM evaluation of the growth kinetics of Au pariticles on highly oriented pyrolithic graphite at elevated temperatures. Phys. Rev. B 2000, 61, 16077–16083, doi:10.1103/PhysRevB.61.16077.
[24]
Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K.S. Metal-graphene interaction studied via atomic resolution scanning transmission electron microscopy. Nano Lett. 2011, 11, 1087–1092, doi:10.1021/nl103980h.
[25]
Liu, L.; Zhou, Z.; Guo, Q.; Yan, Z.; Yao, Y.; Goodman, D.W. The 2-D growth of gold on single-layer graphene/Ru(0001): Enhancement of CO adsorption. Surf. Sci. 2011, 605, L47–L50, doi:10.1016/j.susc.2011.04.040.
[26]
Wong, P.K.J.; de Jong, M.P.; Leonardus, L.; Siekman, M.H.; van der Wiel, W.G. Growth mechanism and interface magnetic properties of Co nanostructures on graphite. Phys. Rev. B 2011, 84, 054420:1–054420:5.
[27]
Vo-van, C.; Schumacher, S.; Coraux, J.; Sessi, V.; Fruchart, O.; Brookes, N.B.; Ohresser, P.; Michely, T. Magnetism of cobalt nanoclusters on graphene on iridium. Appl. Phys. Lett. 2011, 99, 142504:1–142504:3.
[28]
Vo-van, C.; Kassir-Bodon, Z.; Yang, H.; Coraux, J.; Vogel, J.; Pizzini, S.; Bayle-Guillemaud, P.; Chshiev, M.; Ranno Laurent Guisset, V.; David, P.; Salvador, V.; Fruchart, O. Ultrathin epitaxial cobalt films on graphene for spintronic investigations and applications. New J. Phys. 2010, 12, 103040:1–103040:15.
[29]
F?rster, D.F.; Wehling, T.O.; Schumacher, S.; Rosch, A.; Michely, T. Phase coexistence of clusters and islands: Europium on graphene. New J. Phys. 2012, 14, 023022:1–023022:26.
[30]
Sutter, E.; Albrecht, P.; Wang, B.; Bocquet, M.-L.; Wu, L.; Zhu, Y.; Sutter, P. Arrays of Ru nanoclsuters with narrow size distribution template by monolayer graphene on Ru. Surf. Sci. 2011, 605, 1676–1684, doi:10.1016/j.susc.2011.01.026.
[31]
Rytk?nen, K.; Akola, J.; Manninen, M. Density functional study of alkali-metal atoms and monolayers on graphite (0001). Phys. Rev. B 2007, 75, 075401:1–075401:9.
[32]
Uthaisar, C.; Barone, V.; Peralta, J.E. Lithium adsorption on zigzag graphene nanoribbons. J. Appl. Phys. 2009, 106, 113715:1–113715:6.
[33]
Jin, K.H.; Choi, S.M.; Jhi, S.H. Crossover in the adsorption properties of alkali metals on graphene. Phys. Rev. B 2010, 82, 033414:1–033414:4.
[34]
Lugo-Solis, A.; Vasiliev, I. Ab initio study of K adsorption on graphene and carbon nanotubes: Role of long-range ionic force. Phys. Rev. B 2007, 76, 235431:1–235431:8.
[35]
Martínez, J.I.; Cabria, I.; López, M.J.; Alonso, J.A. Adsorption of lithium on finite graphitic clusters. J. Phys. Chem. C 2009, 113, 939–941.
[36]
Davydov, S.Y. Adsorption of Sodium and cesium on graphite: Work function calculations. Tech. Phys. Lett. 2009, 35, 998–1000, doi:10.1134/S1063785009110078.
[37]
Valencia, F.; Romero, A.H.; Ancilotto, F.; Silvestrelli, P.L. Lithium adsorption on graphite from density functional theory calculations. J. Phys. Chem. B 2006, 110, 14832–14841.
[38]
Chan, K.T.; Neaton, J.B.; Cohen, M.L. First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 2008, 77, 235430:1–235430:12.
[39]
Sanchez-Paisal, Y.; Sanchez-Portal, D.; Ayuela, A. Ab initio calculations of zirconium adsorption and diffusion on graphene. Phys. Rev. B 2009, 80, 045428:1–045428:10.
[40]
Mao, Y.; Yuan, J.; Zhong, J. Density functional calculation of transition metal adatom adsorption on graphene. J. Phys. Condens. Matter 2008, 20, doi:10.1088/0953-83-8984/20/11/115209.
[41]
Sevin?li, H.; Topsakal, M.; Durgun, E.; Ciraci, S. Electronic and magnetic properties of 3d transition metal atom adsorbed graphene and graphene nanoribbons. Phys. Rev. B 2008, 77, 195434:1–195434:7.
[42]
Zanella, I.; Fagan, S.B.; Mota, R.; Fazzio, A. Electric and magnetic properties of Ti and Fe on graphene. J. Phys. Chem. C 2008, 112, 9163–9168, doi:10.1021/jp711691r.
[43]
Zólyomi, V.; Rusznyák, á.; Kürti, J.; Lambert, C.J. First principles study of the binding of 4d and 5d transition metals to graphene. J. Phys. Chem. C 2010, 114, 18548–18552, doi:10.1021/jp107669b.
[44]
Wehling, T.O.; Balatsky, A.V.; Katsnelson, M.I.; Lichtenstein, A.I.; Rosch, A. Orbitally controlled Kondo effect of Co adatoms on grapheme. Phys. Rev. B 2010, 81, 115427:1–115427:6.
[45]
Porter, C.D.; Stroud, D. Clustering and magnetic anisotropy of Fe adatoms on graphene. Phys. Rev. B 2012, 85, 235452:1–235452:10.
[46]
Nemec, N.; Tománek, D.; Cuniberti, G. Contact dependence of carrier injection in carbon nanotubes: An ab initio study. Phys. Rev. Lett. 2006, 96, 076802:1–076802:4.
[47]
Krasheninnikov, A.V.; Lehtinen, P.O.; Foster, A.S.; Pyykk?, P.; Nieminen, R.M. Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys. Rev. Lett. 2009, 102, 126807:1–126807:4.
[48]
Cao, C.; Wu, M.; Jiang, J.; Cheng, H.P. Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures. Phys. Rev. B 2010, 81, 205424:1–205424:9.
[49]
Ishii, A.; Yamamoto, M.; Asano, H.; Fujiwara, K. DFT calculation for adatom adsorption on graphene sheet as a prototype of carbon nano tube functionalization. J. Phys. Conf. Ser. 2008, 100, 052087:1–052087:4.
[50]
Longo, R.C.; Carrete, J.; Ferrer, J.; Gallego, L.J. Structural, magnetic, and electronic properties of Nin and Fen nanostructures (n = 1-4) adsorbed on zigzag nanoribbons. Phys. Rev. B 2010, 81, 115418:1–115418:10.
[51]
Johll, H.; Kang, H.C. Density functional theory of Fe, Co, and Ni adatoms and dimmers adsorbed on graphene. Phys. Rev. B 2009, 79, 245416:1–245416:18.
[52]
Duffy, D.M.; Blackman, J.A. Magnetism of 3d transition-metal adatoms and dimmers on graphite. Phys. Rev. B 1998, 58, 7443–7449, doi:10.1103/PhysRevB.58.7443.
[53]
Wu, M.; Liu, E.Z.; Ge, M.Y.; Jiang, J.Z. Stability, electronic, and magnetic behaviors of Cu adsorbed graphene: A first-principles study. Appl. Phys. Lett. 2009, 94, 102505:1–102505:3.
[54]
Aktürk, O.ü.; Tomak, M. AunPtn clusters adsorbed on graphene studied by first-principles calculations. Phys. Rev. B 2009, 80, 085417:1–085417:6.
[55]
Amft, M.; Sanyal, B.; Eriksson, O.; Skorodumova, N.V. Small gold clusters on graphene, their mobility and clustering: A DFT study. J. Phys. Condens. Matter 2011, 23, doi:10.1088/0953-8984/23/20/205301.
[56]
Varns, R.; Strange, P. Stability of gold atoms and dimers adsorbed on graphene. J. Phys. Condens. Matter 2008, 20, 225005:1–225005:8.
[57]
Okazaki-Maeda, K.; Morikawa, Y.; Tanaka, S.; Kohyama, M. Structures of Pt clusters on graphene by first-principles calculations. Surf. Sci. 2010, 604, 144–154, doi:10.1016/j.susc.2009.11.001.
[58]
Zhou, Y.G.; Zu, X.T.; Gao, F.; Lv, H.F.; Xiao, H.Y. Adsorption-induced magnetic properties and metallic behavior of graphene. Appl. Phys. Lett. 2009, 95, 123119:1–123119:3.
[59]
Balog, R.; J?rgensen, B.; Wells, J.; L?gsgaard, E.; Hofmann, P.; Besenhacher, F.; Hornek?r, L. Atomic hydrogen adsorbate structures on graphene. J. Am. Chem. Soc. 2009, 131, 8744–8745.
[60]
Li, W.; Zhao, M.; Xia, Y.; Zhang, R.; Mu, Y. Covalent-adsorption induced magnetism in graphene. J. Mater. Chem. 2009, 19, 9274–9282, doi:10.1039/b908949g.
[61]
Ivanovskaya, V.V.; Zobelli, A.; Teillet-Billy, D.; Rougeau, N.; Sidis, V.; Briddon, P.R. Hydrogen adsorption on graphene: A first principles study. Eur. Phys. J. B 2010, 76, 481–486, doi:10.1140/epjb/e2010-00238-7.
[62]
Wehling, T.O.; Katsnelson, M.I.; Lichtenstein, A.I. Impurities on graphene: Midgap states and migration barriers. Phys. Rev. B 2009, 80, 085428:1–085428:7.
[63]
Wang, W.X.; liang, S.H.; Yu, T.; Li, D.H.; Li, Y.B.; Han, X.F. The study of interaction between graphene and metals by Raman spectroscopy. J. Appl. Phys. 2011, 109, 07C501:1–07C501:3.
[64]
Khomyakov, P.A.; Giovannetti, G.; Rusu, P.C.; Brocks, G.; van den Brink, J.; Kelly, P.J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425:1–195425:12.
[65]
Yoo, E.J.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 2009, 9, 2255–2259.
[66]
Kou, R.; Shao, Y.; Wang, D.; Engelhard, M.H.; Kwak, J.H.; Wang, J.; Viswanathan, V.V.; Wang, C.; Lin, Y.; Wang, Y.; Aksay, I.A.; Liu, J. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Elctrochem. Commun. 2009, 11, 954–957, doi:10.1016/j.elecom.2009.02.033.
[67]
Seger, B.; Kamat, P.V. Electrocatalytically active graphene-platinum naocomposites. Role of 2-D carbon support in PEM fuel cell. J. Phys. Chem. C 2009, 113, 7990–7995, doi:10.1021/jp900360k.
[68]
Seo, M.H.; Choi, S.M.; Kim, H.J.; Kim, W.B. The graphene-supported Pd and Pt catalysts for highly active oxygen reduction reaction in an alkaline condition. Electrochem. Commun. 2011, 13, 182–185, doi:10.1016/j.elecom.2010.12.008.
[69]
Bong, S.; Kim, Y.R.; Kim, I.; Wooa, S.; Uhmb, S.; Lee, J.; Kim, H. Graphene supported electrocatalysts for methanol oxidation. Electrochem. Commun. 2010, 12, 129–131, doi:10.1016/j.elecom.2009.11.005.
[70]
Dong, L.; Gari, R.R.S.; Li, Z.; Graig, M.M.; Hou, S. Graphene-supported platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol ethanol oxidation. Carbon 2010, 48, 781–787, doi:10.1016/j.carbon.2009.10.027.
[71]
Liu, X.; Wang, C.Z.; Yao, Y.X.; Lu, W.C.; Hupalo, M.; Tringides, M.C.; Ho, K.M. Bonding and charge transfer by metal adatom adsorption on graphene. Phys. Rev. B 2011, 83, 235411:1–235411:12.
[72]
Liu, X.; Wang, C.Z.; Hupalo, M.; Yao, Y.X.; Tringides, M.C.; Lu, W.C.; Ho, K.M. Adsorption and growth morphology of rare earth metals on graphene studied by ab initio calculations and scanning tunneling microscopy. Phys. Rev. B 2010, 82, 245408:1–245408:7.
[73]
Hupalo, M.; Liu, X.; Wang, C.Z.; Lu, W.C.; Yao, Y.X.; Ho, K.M.; Tringides, M.C. Metal nanostructure formation on graphene: Weak versus strong bonding. Adv. Mater. 2011, 23, 2082–2087, doi:10.1002/adma.201100412.
[74]
Hupalo, M.; Binz, S.; Tringides, M.C. Strong metal adatom substrate interaction of Gd and Fe with graphene. J. Phys. Condens. Matter 2011, 23, 045005:1–045005:7.
[75]
Liu, X.; Wang, C.Z.; Hupalo, M.; Lu, W.C.; Thiel, P.A.; Ho, K.M.; Tringides, M.C. Fe-Fe adatom interaction and growth morphology on graphene. Phys. Rev. B 2011, 84, 235446:1–235446:5.
[76]
Liu, X.; Wang, C.Z.; Hupalo, M.; Lu, W.C.; Tringides, M.C.; Yao, Y.X.; Ho, K.M. Metals on graphene: Correlation between adatom adsorption behavior and growth morphology. Phys. Chem. Chem. Phys. 2012, 14, 9157–9166, doi:10.1039/c2cp40527j.
[77]
Binz, S.M.; Hupalo, M.; Liu, X.; Wang, C.Z.; Lu, W.C.; Thiel, P.A.; Ho, K.M.; Conrad, E.H.; Tringides, M.C. High Island Densities and Long Range Repulsive Interactions: Fe on Epitaxial Graphene. Phys. Rev. Lett. 2012, 109, 026103:1–026103:5.
[78]
Liu, X.; Hupalo, M.; Wang, C.Z.; Lu, W.C.; Thiel, P.A.; Ho, K.M.; Tringides, M.C. Growth morphology and thermal stability of metal islands on graphene. Phys. Rev. B 2012, 86, 081414:1–081414:5.
[79]
Coraux, J.; N’Diaye, A.T.; Engler, M.; Busse, C.; Wall, D.; Buckanie, N.; Heringdorf, F.-J.M.; Gastel, R.; Poelsema, B.; Michely, T. Growth of graphene on Ir(111). New J. Phys. 2009, 11, 023006:1–023006:22.
[80]
Coraux, J.; N'Diaye, A.T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570, doi:10.1021/nl0728874.
[81]
N’Diaye, A.T.; Coraux, J.; Plasa, T.N.; Busse, C.; Michely, T. Structure of epitaxial graphene on Ir(111). New J. Phys. 2008, 10, 043033:1–043033:16.
[82]
Bartelt, N.C.; McCarty, K.F. Graphene growth on metal surface. MRS Bull. 2012, 37, 1158–1165, doi:10.1557/mrs.2012.237.
[83]
Wintterlin, J.; Bocquet, M.-L. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852, doi:10.1016/j.susc.2008.08.037.
[84]
Giovannetti, G.; Khomyakov, P.A.; Brocks, G.; Karpan, V.M.; van den Brink, J.; Kelly, P.J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803:1–026803:4.
[85]
Dedkov, Y.S.; Fonin, M.; Rüdiger, U.; Laubschat, C. Rashba effect in the graphene/Ni(111) system. Phys. Rev. Lett. 2008, 100, 107602:1–107602:4.
[86]
Nie, S.; Wofford, J.M.; Bartelt, N.C.; Dubon, O.D.; McCarty, K.F. Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B 2011, 84, 155425:1–155425:7.
[87]
Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A.M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601:1–157601:4.
[88]
Wofford, J.M.; Starodub, E.; Walter, A.L.; Nie, S.; Bostwick, A.; Bartelt, N.C.; Thürmer, K.; Rotenberg, E.; McCarty, K.F.; Dubon, O.D. Extraordinary epitaxial alignment of graphene islands on Au(111). New J. Phys. 2012, 14, 053008:1–053008:10.
[89]
Vázquez de Parga, A.L.; Calleja, F.; Borca, B.; Passeggi, M.C.G., Jr.; Hinarejos, J.J.; Guinea, F.; Miranda, R. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 2008, 100, 056807:1–056807:4.
Hupalo, M.; Conrad, E.H.; Tringides, M.C. Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surface: A scanning tunneling microscopy study. Phys. Rev. B 2009, 80, 041401:1–041401:4.
[92]
Lu, W.; Boeckl, J.J.; Mitchel, W.C. A critical review of growth of low-dimensional carbon nanostructures on SiC(0001): Impact of growth environment. J. Phys. D 2010, 43, doi:10.1088/0022-32-3727/43/37/374004.
[93]
Al-Temimy, A.; Riedl, C.; Starke, U. Low temperature growth of epitaxial graphene on SiC induced by carbon evaporation. Appl. Phys. Lett. 2009, 95, 231907:1–231907:3.
[94]
Park, J.H.; Mitchel, W.C.; Grazulis, L.; Eyink, K.; Smith, H.E.; Hoelscher, J.E. Role of extended defected SiC interface layer on the growth of epitaxial graphene on SiC. Carbon 2011, 49, 631–635.
[95]
Hass, J.; de Heer, W.A.; Conrad, E.H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 2008, 20, doi:10.1088/0953-83-8984/20/32/323202.
[96]
Gierz, I.; Riedl, C.; Starke, U.; Ast, C.R.; Kern, K. Atomic hole doping of graphene. Nano Lett. 2008, 8, 4603–4607, doi:10.1021/nl802996s.
[97]
McChesney, J.L.; Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; González, J.; Rotenberg, E. Extended van hove singularity and superconducting instability in doped graphene. Phys. Rev. Lett. 2010, 104, 136803:1–136803:4.
[98]
Gierz, I.; Suzuki, T.; Weitz, R.T.; Lee, D.S.; Krauss, B.; Riedl, C.; Starke, U.; H?chst, H.; Smet, J.H.; Ast, C.R.; Kern, K. Electronic decoupling of an epitaxial graphene monolayer by gold intercalation. Phys. Rev. B 2010, 81, 235408:1–235408:6.
[99]
Sandin, A.; Jayasekera, T.; Rowe, J.E.; Kim, K.W.; Nardelli, M.B.; Dougherty, D.B. Multiple coexisting intercalation structures of sodium in epitaxial graphene-SiC interfaces. Phys. Rev. B 2012, 85, 125410:1–125410:5.
[100]
Evans, J.W.; Thiel, P.A.; Bartelt, M.C. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surf. Sci. Rep. 2006, 61, 1–128.
[101]
Venables, J.A.; Spiller, G.D.T.; Hanbucken, M. Nucleation and growth of thin films. Rep. Prog. Phys. 1984, 47, 399–459, doi:10.1088/0034-4885/47/4/002.
[102]
Stroscio, J.A.; Pierce, D.T.; Dragoset, R.A. Homoepitaxial growth of iron and a real space view of reflection-high-energy-electron diffraction. Phys. Rev. Lett. 1993, 70, 3615–3618, doi:10.1103/PhysRevLett.70.3615.
[103]
Hupalo, M.; Tringides, M.C. Ultrafast kinetics in Pb/Si(111) from the collective spreading of the wetting layer. Phys. Rev. B 2007, 75, 235443:1–235443:7.
[104]
Chan, T.L.; Yao, Y.X.; Wang, C.Z.; Lu, W.C.; Li, J.; Qian, X.F.; Yip, S.; Ho, K.M. Highly localized quasiatomic minimal basis orbitals for Mo from ab initio calculations. Phys. Rev. B 2007, 76, 205119:1–205119:10.
[105]
Qian, X.F.; Li, J.; Qi, L.; Wang, C.Z.; Chan, T.L.; Yao, Y.X.; Ho, K.M.; Yip, S. Quasiatomic orbitals for ab initio tight-binding analysis. Phys. Rev. B 2008, 78, 245112:1–245112:22.
[106]
Yao, Y.X.; Wang, C.Z.; Ho, K.M. Chemical bonding analysis for solid-state systems using intrinsic oriented quasiatomic minimal-basis-set orbitals. Phys. Rev. B 2010, 81, 235119:1–235119:6.
[107]
Mayer, I. Charge, bond order and valence in the ab initio SCF theory. Chem. Phys. Lett. 1983, 97, 270–274, doi:10.1016/0009-2614(83)80005-0.
[108]
Shytov, A.V.; Abanin, D.A.; Levitov, L.S. Long-Range interaction between adatoms in graphene. Phys. Rev. Lett. 2009, 103, 016806:1–016806:4.
[109]
Bena, C. Effect of a single localized impurity on the local density of sates in monolayer and bilyaer graphene. Phys. Rev. Lett. 2008, 100, 076601:1–076601:4.
[110]
Bacsi, A.; Virosztek, A. Local density of states and Friedel oscillations in graphene. Phys. Rev. B 2010, 82, 193405:1–193405:4.
[111]
Cheianov, V.V.; Sylju?sen, O.; Altshuler, B.L.; Falko, V.I. Ordered states of adatoms on graphene. Phys. Rev. B 2009, 80, 233409:1–233409:4.
[112]
Saremi, S. RKKY in half-filled bipartite lattices: Graphene as an example. Phys. Rev. B 2007, 76, 184430:1–184430:6.
[113]
Cheianov, V.V.; Falko, V.I. Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene. Phys. Rev. Lett. 2006, 97, 226801:1–226801:4.