全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Detection of erythemato-squamous diseases using AR-CatfishBPSO-KSVM

Keywords: Support vector machines , catfish particle swarm optimization , association rules , erythematosquamous.

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nowadays, one of the most important usages of machine learning is diagnosis of diverse diseases. In thiswork, we introduces a diagnosis model based on Catfish binary particle swarm optimization(CatfishBPSO), kernelized support vector machines (KSVM) and association rules (AR) as our featureselection method to diagnose erythemato-squamous diseases. The proposed model consisted of two stages.In the first stage, AR is used to select the optimal feature subset from the original feature set. Next, basedon the fact that kernel parameter setting in the SVM training procedure significantly influences theclassification accuracy and CatfishBPSO is a promising tool for global searching, a CatfishBPSO basedapproach is employed for parameter determination of KSVM. Experimental results show that the proposedAR-CatfishBPSO-KSVM model achieves 99.09% classification accuracy using 24 features of theerythemato-squamous disease dataset which shows that our proposed method is more accurate comparedto other popular methods in this literature like Support vector machines and AR-MLP (association rules -multilayer perceptron). It should be mentioned that we took our dataset from University of CaliforniaIrvine machine learning database.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133