全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Opening up the Window into “Chemobrain”: A Neuroimaging Review

DOI: 10.3390/s130303169

Keywords: chemotherapy, cognitive impairment, chemobrain, neuroimaging, cancer survivorship issues

Full-Text   Cite this paper   Add to My Lib

Abstract:

As more chemotherapy-treated cancer patients are reaching survivorship, side-effects such as cognitive impairment warrant research attention. The advent of neuroimaging has helped uncover a neural basis for these deficits. This paper offers a review of neuroimaging investigations in chemotherapy-treated adult cancer patients, discussing the benefits and limitations of each technique and study design. Additionally, despite the assumption given by the chemobrain label that chemotherapy is the only causative agent of these deficits, other factors will be considered. Suggestions are made on how to more comprehensively study these cognitive changes using imaging techniques, thereby promoting generalizability of the results to clinical applications. Continued investigations may yield better long-term quality of life outcomes by supporting patients’ self-reports, and revealing brain regions being affected by chemotherapy.

References

[1]  Ahles, T.A.; Tope, D.M.; Furstenberg, C.; Hann, D.; Mills, L. Psychologic and neuropsychologic impact of autologous bone marrow transplantation. J. Clin. Oncol. 1996, 14, 1457–1462.
[2]  Ahles, T.A.; Saykin, A.J.; Furstenberg, C.T.; Cole, B.; Mott, L.A.; Skalla, K.; Whedon, M.B.; Bivens, S.; Mitchell, T.; Greenberg, E.R.; Silberfarb, P.M. Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J. Clin. Oncol. 2002, 20, 485–493.
[3]  Bender, C.M.; Sereika, S.M.; Berga, S.L.; Vogel, V.G.; Brufksy, A.M.; Paraska, K.K.; Ryan, C.M. Cognitive impairment associated with adjuvant therapy in breast cancer. Psycho-Oncology 2006, 15, 422–430.
[4]  Berglund, G.; Bolund, C.; Fornander, T.; Rutqvist, L.E.; Sjoden, P. Late effects of adjuvant chemotherapy on quality of life among breast cancer patients. Eur. J. Cancer 1991, 27, 1075–1081.
[5]  Brezden, C.; Phillips, K.-A.; Bunston, T.; Tannock, I.F. Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J. Clin. Oncol. 2000, 18, 2695–2701.
[6]  Castellon, S.A.; Ganz, P.A.; Bower, J.E.; Petersen, L.; Abraham, L.; Greendale, G.A. Neurocognitive performance in breast cancer survivors exposed to adjuvant chemotherapy and tamoxifen. J. Clini. Exp. Neuropsychol. 2004, 26, 955–969.
[7]  Gottschalk, L.A.; Holcombe, R.F.; Jackson, D.; Bechtel, R.J. The effects of anticancer chemotherapeutic drugs on cognitive function and other neuropsychiatric dimensions in breast cancer patients. Methods Find. Exp. Clin. Pharmacol. 2003, 25, 117–122.
[8]  Hurria, A.; Rosen, C.; Hudis, C.; Zuckerman, E.; Panageas, K.S.; Lachs, M.S.; Witmer, M.; van Gorp, W.G.; Fornier, M.; D'Andrea, G.; Moasser, M.; Dang, C.; Van Poznak, C.; Hurria, A.; Holland, J. Cognitive function of older patients receiving adjuvant chemotherapy for breast cancer: A pilot prospective longitudinal study. J. Am. Geriatr. Soc. 2006, 54, 925–931.
[9]  Jenkins, V.; Shilling, V.; Deutsch, G.; Bloomfield, D.; Morris, R.; Allan, S.; Bishop, H.; Hodson, N.; Mitra, S.; Sadler, G.; Shah, E.; Stein, R.; Whitehead, S.; Winstanley, J. A 3-year prospective study of the effects of adjuvant treatments on cognition in women with early stage breast cancer. Brit. J. Cancer 2006, 94, 828–834.
[10]  Mar Fan, H.G.; Houédé-Tchen, N.; Yi, Q.-L.; Chemerynsky, I.; Downie, F.P.; Sabate, K.; Tannock, I.F. Fatigue, menopausal symptoms, and cognitive function in women after adjuvant chemotherapy for breast cancer: 1- and 2-year follow-up of a prospective controlled study. J. Clin. Oncol. 2005, 31, 8025–8032.
[11]  Schagen, S.B.; van Dam, F.; Muller, M.J.; Boogerd, W.; Lindeboom, J.; Bruning, P.F. Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer 1999, 85, 640–650.
[12]  Scherwath, A.; Mehnart, A.; Schleimer, B.; Schirmer, L.; Fehlauer, F.; Kreienberg, R.; Metzner, B.; Thiel, E.; Zander, A.R.; Schulz-Kindermann, F.; Koch, C. Neuropsychological function in high-risk breast cancer survivors after stem-cell supported high-dose therapy versus standard-dose chemotherapy: Evaluation of long-term treatment effects. Ann. Oncol. 2006, 17, 415–423.
[13]  Servaes, P.; Verhagen, C.; Bleijenberg, G. Relations between fatigue, neuropsychological functioning, and physical activity after treatment for breast carcinoma: Daily self-report and objective behavior. Cancer 2002, 95, 2017–2026.
[14]  Shilling, V.; Jenkins, V.; Morris, R.; Deutsch, G.; Bloomfield, D. The effects of adjuvant chemotherapy on cognition in women with breast cancer—Preliminary results of an observational longitudinal study. Breast 2005, 14, 142–150.
[15]  Stewart, A.; Collins, B.; MacKenzie, J.; Tomiak, E.; Verma, S.; Bielajew, C. The cognitive effects of adjuvant chemotherapy in early stage breast cancer: A prospective study. Psycho-Oncology 2007, 17, 1–9.
[16]  Tchen, N.; Juffs, H.G.; Downie, F.P.; Yi, Q.-L.; Hu, H.; Chemerynsky, I.; Clemons, M.; Crump, M.; Goss, P.E.; Warr, D.; Tweedale, M.E.; Tannock, I.F. Cognitive function, fatigue, and menopausal symptoms in women receiving adjuvant chemotherapy for breast cancer. J. Clin. Oncol. 2003, 21, 4175–4183.
[17]  van Dam, F.S.A.M.; Schagen, S.B.; Muller, M.J.; Boogerd, W.; van der Wall, E.; Droogleever Fortuyn, M.E.; Rodenhuis, S. Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: High-dose versus standard-dose chemotherapy. J. Nat. Cancer Inst. 1998, 90, 210–218.
[18]  Wagner, L.I.; Sweet, J.J.; Butt, Z.; Desai, J.; Beaumont, J.; Havlin, K.A.; Cella, D. Cognitive Impairment Associated with Chemotherapy for Breast Cancer: An Exploratory Case-Control Study. Abstract Presented at American Society of Clinical Oncology Clinical Science Symposium, Cognitive Impairment in Cancer Survivors, Atlanta, GA, USA, 20 June 2006.
[19]  Wefel, J.S.; Lenzi, R.; Theriault, R.L.; Davis, R.N.; Meyers, C.A. The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma. Cancer 2004, 100, 2292–2299.
[20]  Wieneke, M.H.; Dienst, E.R. Neuropsychological assessment of cognitive functioning following chemotherapy for breast cancer. Psycho-Oncology 1995, 4, 61–66.
[21]  Collins, B.; Mackenzie, J.; Stewart, A.; Bielajew, C.; Verma, S. Cognitive effects of chemotherapy in post-menopausal breast cancer patients 1 year after treatment. Psycho-Oncology 2009, 18, 134–143.
[22]  Jansen, C.E.; Dodd, M.J.; Miaskowski, C.A.; Dowling, G.A.; Kramer, J. Preliminary results of a longitudinal study of changes in cognitive function in breast cancer patients undergoing chemotherapy with doxorubicin and cyclophosphamide. Psycho-Oncology 2008, 17, 1189–1195.
[23]  Quesnel, C.; Savard, J.; Ivers, H. Cognitive impairments associated with breast cancer treatments: results from a longitudinal study. Breast Cancer Res. Treat. 2009, 116, 113–123.
[24]  Wefel, J.S.; Saleeba, A.K.; Buzdar, A.U.; Meyers, C.A. Acute and late onset cognitive dysfunction sssociated with chemotherapy in women with breast cancer. Cancer 2010, 116, 3348–3356.
[25]  Donovan, K.A.; Small, B.J.; Andrykowski, M.A.; Schmitt, F.A.; Munster, P.; Jacobsen, P.B. Cognitive functioning after adjuvant chemotherapy and/or radiotherapy for early-stage breast carcinoma. Cancer 2005, 104, 2499–2507.
[26]  Correa, D.D.; Ahles, T.A. Cognitive adverse effects of chemotherapy in breast cancer patients. Curr. Opin. Support. Palliat. Care. 2007, 1, 57–62.
[27]  Monk, T.G.; Weldon, B.C.; Garvan, C.W.; Dede, D.E.; van der Aa, M.T.; Heilman, K.M.; Gravenstein, J.S. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 2008, 108, 18–30.
[28]  Cimprich, B.; Reuter-Lorenz, P.; Nelson, J.; Clark, P.M.; Therrien, B.; Normolle, D.; Berman, M.G.; Hayes, D.F.; Noll, D.C.; Peltier, S.; Welsh, R.C. Prechemotherapy alterations in brain function in women with breast cancer. J. Clini. Exp. Neuropsychol. 2010, 32, 324–331.
[29]  Scherling, C; Collins, B.; MacKenzie, J.; Bielajew, C.; Smith, A.M. Pre-chemotherapy differences in working memory in breast cancer patients compared to controls: An fMRI study. Front Hum. Neurosci. 2011, 5, 1–21.
[30]  Scherling, C; Collins, B.; MacKenzie, J.; Bielajew, C.; Smith, A.M. Pre-chemotherapy differences in response inhibition in breast cancer patients compared to controls: An fMRI study. J. Clin. Exp. Neuropsychol. 2012, 34, 543–560.
[31]  Scherling, C; Collins, B.; MacKenzie, J.; Lepage, C.; Bielajew, C.; Smith, A.M. Structural brain differences in breast cancer patients compared to matched controls prior to chemotherapy. J. Int. Biol. 2012, 4, 3–25.
[32]  Correa, D.D.; Ahles, T.A. Neurocognitive changes in cancer survivors. Cancer J. 2008, 14, 396–400.
[33]  Wefel, J.S.; Schagen, S.B. Chemotherapy-related cognitive dysfunction. Curr. Neurol. Neurosci Rep. 2012, 12, 267–275.
[34]  Walker, C.H.; Drew, B.A.; Antoon, J.W.; Kalueff, A.V.; Beckman, S. Neurocognitive effects of chemotherapy and endocrine therapies in the treatment of breast cancer: recent perspectives. Cancer Invest. 2012, 30, 135–148.
[35]  Ferreira, F.N.; de Andrade, A.G.; de Toledo Ferraz Alves, T.C. Neuroimaging findings in breast cancer: A systematic qualitative review. Int. J. Med. Med. Sci. 2009, 1, 442–447.
[36]  Raffa, R.B. Imaging as a means of studying chemotherapy-related cognitive impairment. Adv. Exp. Med. Biol. 2010, 678, 70–76.
[37]  Vardy, J.; Wefel, J.S.; Ahles, T.; Tannock, I.F.; Schagen, S.B. Cancer and cancer-therapy related cognitive dysfunction: an international perspective from the Venice cognitive workshop. Ann. Oncol. 2008, 19, 623–629.
[38]  Wefel, J.; Vardy, J.; Ahles, T.; Schagen, S. International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol. 2011, 12, 703–708.
[39]  Filler, A. MR neurography and diffusion tensor imaging: Origins, history clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5,000 patient study group. Neurosurgery 2009, 65, A29–A43.
[40]  Johansen-Berg, H.; Behrens, T.E.J. Diffusion MRI: From Quantitative Measurement to in vivo Neuroanatomy; London: Academic Press, Elsevier Science Technology: London, UK, 2009.
[41]  Brown, M.S.; Stemmer, S.M.; Simon, J.H.; Stears, J.C.; Jones, R.B.; Cagnoni, P.J.; Sheeder, J.L. White matter disease induced by high-dose chemotherapy: Longitudinal study with MR imaging and proton spectroscopy. Amer. J. Neuroradiol. 1998, 19, 217–221.
[42]  Inagaki, M.; Yoshikawa, E.; Matsuoka, Y.; Sugawara, Y.; Nakano, T.; Akechi, T.; Wada, N.; Imoto, S.; Murakami, K.; Uchitomi, Y. Smaller regional volumes of brain gray and white matter demonstrated in breast cancer survivors exposed to adjuvant chemotherapy. Cancer 2007, 109, 146–156.
[43]  McDonald, B.C.; Conroy, S.K.; Ahles, T.A.; West, J.D.; Saykin, A.J. Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Res. Treat. 2010, 123, 819–828.
[44]  Silverman, D.H.S.; Dy, C.J.; Castellon, S.A.; Lai, J.; Pio, B.S.; Abraham, L.; Waddell, K.; Petersen, L.; Phelps, M.E.; Ganz, P.A. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res. Treat. 2007, 103, 303–311.
[45]  Koppelmans, V.; de Ruiter, M.B.; van der Lijn, F.; Boogerd, W.; Seynaeve, C.; van der Lugt, A.; Vrooman, H.; Niessen, W.J.; Breteler, M.M.B.; Schagen, S.B. Global and focal brain volume in long-term breast cancer survivors exposed to adjuvant chemotherapy. Breast Cancer Res. Treat. 2012, 132, 1099–1106.
[46]  McDonald, B.C.; Conroy, S.K.; Smith, D.J.; West, J.D.; Saykin, A.J. Frontal gray matter reduction after breast cancer chemotherapy and association with executive symptoms: A replication and extension study. Brain Behav. Immunity 2012, doi:10.1016/j.bbi.2012.05.007.
[47]  Hosseini, S.M.H.; Koovakkattu, D.; Kesler, S.R. Altered small-world properties of gray matter networks in breast cancer. BMC Neurol. 2012, 12, 28–38.
[48]  Abraham, J.; Haut, M.W.; Moran, M.T.; Filburn, S.; Lemieux, S.; Kuwabara, H. Adjuvant chemotherapy for breast cancer: Effects on cerebral white matter seen in diffusion tensor imaging. Clin. Breast Cancer 2008, 8, 88–91.
[49]  Deprez, S.; Amant, F.; Yigit, R.; Porke, K.; Verhoeven, J.; Van den Stock, J.; Smeets, A.; Christiaens, M.-R.; Leemans, A.; Van Hecke, W.; Vandenberghe, J.; Vandenbulcke, M.; Sunaert, S. Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Hum. Brain Mapp. 2010, 32, 480–493.
[50]  Pierpaoli, C.; Jezzard, P.; Basser, P.J.; Barnett, A.; Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology 1996, 201, 637–648.
[51]  Basser, P.J.; Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Resonance Ser. B. 1996, 111, 209–219.
[52]  Iannucci, G.; Rovaris, M.; Giacomotti, L.; Comi, G.; Filippi, M. Correlation of multiple sclerosis measures derived from T2-weighted, T1-weighted, magnetization transfer, and diffusion tensor MR imaging. Amer. J. Neuroradiol. 2001, 22, 1462–1467.
[53]  Stevenson, V.L.; Parker, G.J.; Barker, G.J.; Birnie, K.; Tofts, P.S.; Miller, D.H.; Thompson, A.J. Variations in T1 and T2 relaxation times of normal appearing white matter and lesions in multiple sclerosis. J. Neurol. Sci. 2000, 178, 81–87.
[54]  Deprez, S.; Amant, F.; Smeets, A.; Peeters, R.; Leemans, A.; Van Hecke, W.; Verhoeven, J.S.; Christiaens, M-R.; Vandenberghe, J.; Vandenbulcke, M.; Sunaert, S. Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J. Clin. Oncol. 2012, 30, 274–281.
[55]  de Ruiter, M.B.; Reneman, L.; Boogerd, W.; Veltman, D.J.; Caan, M.; Douaud, G.; Lavini, C.; Linn, S.C.; Boven, E.; van Dam, F.S.A.M.; Schagen, S.B. Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: Converging results from multimodal magnetic resonance imaging. Hum. Brain Mapp. 2012, 33, 2971–2983.
[56]  de Ruiter, M.B.; Reneman, L.; Boogerd, W.; Veltman, D.J.; van Dam, F.S.; Nederveen, A.J.; Boven, E.; Schagen, S.B. Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Hum. Brain Mapp. 2011, 32, 1181–1348.
[57]  Donchin, E.; Coles, M.G.H. Is the P300 component a manifestation of context updating. Behav. Brain Sci. 1988, 11, 357–374.
[58]  Kok, A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 2001, 38, 557–577.
[59]  Arthurs, O.J.; Boniface, S. How well do we understand the neural origins of the fMRI BOLD signal? Trend. Neurosci. 2002, 25, 27–31.
[60]  Logothetis, N.K.; Wandell, B.A. Interpreting the BOLD signal. Annu. Rev. Physiol. 2004, 66, 735–769.
[61]  Kreukels, B.P.; Schagen, S.B.; Ridderinkhof, K.R.; Boogerd, W.; Hamburger, H.L.; van Dam, F.S. Electrophysiological correlates of information processing in breast-cancer patients treated with adjuvant chemotherapy. Breast Cancer Res. Treat. 2005, 94, 53–61.
[62]  Kreukels, B.P.; Schagen, S.B.; Ridderinkhof, K.R.; Boogerd, W.; Hamburger, H.L.; Muller, M.J.; van Dam, F.S. Effects of high-dose and conventional-dose adjuvant chemotherapy on long-term cognitive sequelae in patients with breast cancer: An electrophysiologic study. Clin. Breast Cancer 2006, 7, 67–78.
[63]  Kreukels, B.P.; Hamburger, H.L.; de Ruiter, M.B.; van Dam, F.S.; Ridderinkhof, K.R.; Boogerd, W.; Schagen, S.B. ERP amplitude and latency in breast cancer survivors treated with adjuvant chemotherapy. Clin. Neurophysiol. 2008, 119, 533–541.
[64]  Kwong, K.K.; Belliveau, J.W.; Chesler, D.A.; Goldberg, I.E.; Weisskoff, R.M.; Poncelet, B.P.; Kennedy, D.N.; Hoppel, B.E.; Cohen, M.S.; Turner, R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Nat. Acad. Sci. USA 1992, 89, 5675–5679.
[65]  McAllister, T.W.; Sparling, M.B.; Flashman, L.A.; Guerin, S.J.; Mamourian, A.C.; Saykin, A.J. Differential working memory load effects after mild traumatic brain injury. NeuroImage 2001, 14, 1004–1012.
[66]  Smith, A.M.; Fried, P.; Hogan, M.; Cameron, I. Effects of prenatal marijuana exposure on response inhibition: An fMRI study of young adults. Neurotoxicol. Teratol. 2004a, 533–542.
[67]  Smith, A.M.; Fried, P.; Hogan, M.; Cameron, I. The effects of prenatal and current marijuana exposure on response inhibition: A functional magnetic resonance imaging study. Brain Cognition 2004, 54, 147–149.
[68]  Bruno, J.; Hosseini, S.M.H.; Kesler, S. Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors. Neurobiol. Disease 2012, 48, 329–338.
[69]  Ferguson, R.J.; McDonald, B.C.; Saykin, A.J.; Ahles, T.A. Brain structure and function differences in monozygotic twins: possible effects of breast cancer chemotherapy. J. Clin. Oncol. 2007, 25, 3866–3870.
[70]  Saykin, A.J.; McDonald, B.C.; Ahles, T.; Chesnut, L.A.; Wang, P.J.; Furstenberg, C.T.; Horrigan, S.A.; Mamourian, A.C. Altered Brain Activation Following Systemic Chemotherapy for Breast Cancer: Interim Analysis from a Prospective fMRI Study. Abstract presented at 34th Annual Meeting of the International Neuropsychological Society, Boston, MA, USA, 1–4 February 2006.
[71]  Kesler, S.R.; Bennett, F.C.; Mahaffey, M.L.; Spiegel, D. Regional brain activation during verbal declarative memory in metastatic breast cancer. Clin. Cancer Res. 2009, 15, 6665–6673.
[72]  Kesler, S.R.; Kent, J.S.; O'Hara, R. Prefrontal cortex and executive function impairments in primary breast cancer. Arch. Neurol. 2011, 68, 1447–1453.
[73]  McDonald, B.C.; Conroy, S.K.; Ahles, T.A.; West, J.D.; Saykin, A.J. Alterations in brain activation during working memory processing associated with breast cancer and treatment: A prospective functional magnetic resonance imaging study. J. Clin. Oncol. 2012, 30, 2500–2508.
[74]  Lopez-Zunini, R.A.; Scherling, C.; Wallis, N.; Collins, B.; MacKenzie, J.; Bielajew, C.; Smith, A.M. Differences in verbal memory retrieval in breast cancer chemotherapy patients compared to healthy controls: A prospective fMRI study. Brain Imag. Behavior 2013, doi:10.1007/s11682-012-9213-0.
[75]  Poldrack, R.A. Neuroimaging: Separating the Promise from the Pipe Dream. Available online: http://www.dana.org/news/cerebrum/detail.aspx?id=22220 (accessed on 28 May 2009).
[76]  Schagen, S.B.; Muller, M.J.; Boogerd, W.; Rosenbrand, R.M.; van Rhijn, D.; Rodenhuis, S.; van Dam, F.S.A.M. Late effects of adjuvant chemotherapy on cognitive function: A follow-up study in breast cancer patients. Ann. Oncol. 2002, 132, 1387–1397.
[77]  Shilling, V.; Jenkins, V. Self-reported cognitive problems in women receiving adjuvant therapy for breast cancer. Eur. J. Oncol. Nurs. 2007, 11, 6–15.
[78]  Bremner, J.D.; Southwick, S.M.; Charney, D.S. The Neurobiology of Posttraumatic Stress Disorder: An Integration of Animal and Human Research. In Posttraumatic Stress Disorder: A Comprehensive Text; Saigh, P.A., Bremner, J.D., Eds.; Allyn Bacon: New York, NY, USA, 1999; pp. 103–143.
[79]  McEwen, B.S.; Magarinos, M. Stress effects on morphology and function of the hippocampus. Ann. N Y Acad. Sci. 1997, 821, 271–284.
[80]  Sapolsky, R. A possible mechanism for glucocorticoid toxicity in the hippocampus: increased vulnerability of neurons to metabolic insults. J. Neurosci. 1985, 5, 1228–1232.
[81]  Lupien, S.J.; Gillin, C.J.; Hauger, R.L. Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: A dose-response study in humans. Behav. Neurosci. 1999, 113, 420–430.
[82]  Taverniers, J.; Van Ruysseveldt, J.; Smeets, T.; von Grumbkow, J. High-intensity stress elicits robust cortisol increases, and impairs working memory and visuo-spatial declarative memory in Special Forces candidates: A field experiment. Stress 2010, 13, 323–333.
[83]  Oei, N.Y.L.; Everaerd, W.T.A.M.; Elzinga, B.M.; van Well, S.M.; Bermond, B. Psychosocial stress impairs working memory at high loads: An association with cortisol levels and memory retrieval. Stress 2006, 9, 133–141.
[84]  Starkman, M.N.; Gebarski, S.S.; Berent, S.; Schteingart, D.E. Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing's syndrome. Biol. Psychiatry 1992, 32, 756–765.
[85]  McEwen, B.S. Stress and the aging hippocampus. Front. Neuroendocrinol. 1999, 20, 49–70.
[86]  Pruessner, J.C.; Baldwin, M.W.; Dedovic, K.; Renwick, R.; Mahani, N.K.; Lord, C.; Meaney, M.; Lupien, S. Self-esteem, locus of control, hippocampal volume, and cortisol regulation in young and old adulthood. NeuroImage 2005, 28, 815–826.
[87]  Tuxen, M.K.; Werner, H.S. Neurotoxicity secondary to antineoplastic drugs. Cancer Treat. Rev. 1994, 20, 191–214.
[88]  Troy, L.; McFarland, K.; Littman-Power, S.; Kelly, B.J.; Walpole, E.T.; Wyld, D.; Thomson, D. Cisplatin-based therapy: A neurological and neuropsychological review. Psycho-Oncology 2000, 9, 29–39.
[89]  Abercrombie, H.C.; Giese-Davis, J.; Sephton, S.; Epel, E.S.; Turner-Cobb, J.M.; Spiegel, D. Flattened cortisol rhythms in metastatic breast cancer patients. Psychoneuro-Endocrinology 2004, 29, 1082–1092.
[90]  Spiegel, D.; Giese-Davis, J.; Taylor, C.B.; Kraemer, H. Stress sensitivity in metastatic breast cancer: analysis of hypothalamic-pituitary-adrenal axis function. Psychoneuro-Endocrinology 2006, 31, 1231–1244.
[91]  Kumari, M.; Badrick, E.; Chandola, T.; Adler, N.E.; Epel, E.; Seeman, T.; Kirschbaum, C.; Marmot, M.G. Measures of social position and cortisol secretion in an aging population: findings from the Whitehall II study. Psychosom. Med. 2010, 72, 27–34.
[92]  Ahles, T.A.; Saykin, A. Cognitive effects of standard-dose chemotherapy in patients with cancer. Cancer Invest. 2008, 19, 812–820.
[93]  Chang, J.; Couture, F.A.; Young, S.D.; Lau, C.Y.; McWatters, K.L. Weekly administration of epoietin alfa improves cognition and quality of life in patients with breast cancer receiving chemotherapy. Support Canc. Ther. 2004, 2, 52–58.
[94]  Jacobsen, P.B.; Garland, L.L.; Booth-Jones, M.; Donovan, K.A.; Thors, C.L.; Winters, E.; Grendys, E. Relationship of hemoglobin levels to fatigue and cognitive functioning among cancer patients receiving chemotherapy. J. Pain Symptom. Manage. 2004, 28, 7–18.
[95]  Massa, E.; Madeddu, C.; Lusso, M.R.; Gramignano, G.; Mantovani, G. Evaluation of the effectiveness of treatment with erythropoietin on anemia, cognitive functioning, and functions studied by comprehensive geriatric assessment in elderly cancer patients with anemia related to cancer chemotherapy. Crit. Rev. Oncol. Hematol. 2006, 57, 175–182.
[96]  O'Shaughnessy, J.A.; Vukelja, S.J.; Holmes, F.A.; Savin, M.; Jones, M.; Royall, D.; George, M.; Von Hoff, D. Feasibility of quantifying the effects of epoetin alfa therapy on cognitive function in women with breast cancer undergoing adjuvant or neoadjuvant chemotherapy. Clin. Breast Cancer 2005, 5, 439–446.
[97]  O'Shaughnessy, J. Effects of epoetin alfa on cognitive function, mood, asthenia, and quality of life in women with breast cancer undergoing adjuvant chemotherapy. Clin. Breast Cancer 2002, 3, S116–S120.
[98]  Shilling, V.; Jenkins, V.; Fallowfield, L.; Howell, A. The effects of oestrogens and anti-oestrogens on cognition. Breast 2001, 10, 484–491.
[99]  Bender, C.M.; Paraska, K.K.; Sereika, S.M.; Ryan, C.M.; Berga, S.L. Cognitive function and reproductive hormones in adjuvant therapy for breast cancer: A critical review. J. Pain Symptom. Manage. 2001, 21, 407–424.
[100]  Henderson, V.W. Estrogen, cognition, and a woman's risk of Alzheimer's disease. Amer. J. Med. 1997, 103, 11S–18S.
[101]  McEwen, B.S.; Alves, S.E. Estrogen actions in the central nervous system. Endocrine Rev. 1999, 20, 279–307.
[102]  Sherwin, B.B. Estrogen and Cognitive Functioning in Women. Endocr Rev. 2003, 24, 133–151.
[103]  Maki, P.M.; Dumas, J. Mechanisms of action of estrogen in the brain: insights from human neuroimaging and psychopharmacologic studies. Semin. Reprod. Med. 2009, 27, 250–259.
[104]  Lord, C.; Buss, C.; Lupien, S.J.; Pruessner, J.C. Hippocampal volumes are larger in postmenopausal women using estrogen therapy compared to past users, never users and men: a possible window of opportunity effect. Neurobiol. Aging 2008, 29, S95–101.
[105]  Paganini-Hill, A.; Clark, L.J. Preliminary assessment of cognitive function in breast cancer patients treated with tamoxifen. Breast Cancer Res. Treat. 2000, 64, 165–176.
[106]  Palmer, J.L.; Trotter, T.; Joy, A.A.; Carlson, L.E. Cognitive effects of Tamoxifen in pre-menopausal women with breast cancer compared to healthy controls. J. Cancer Survivorship 2008, 2, 275–282.
[107]  Hermelink, K.; Henschel, V.; Untch, M.; Bauerfeind, I.; Lux, M.P.; Munzel, K. Short-term effects of treatment induced hormonal changes on cognitive function in breast cancer patients: Results of a multicenter, prospective, longitudinal study. Cancer 2008, 113, 2431–2429.
[108]  Jenkins, V.A.; Ambroisine, L.M.; Atkins, L.; Cuzick, J.; Howell, A.; Fallowfield, L.J. Effects of anastrozole on cognitive performance in postmenopausal women: A randomised, double-blind chemoprevention trial (IBIS II). Lancet Oncol. 2008, 9, 953–961.
[109]  Marriott, L.K.; Wenk, G.L. Neurobiological consequences of long-term Estrogen Therapy. Curr. Dir. Psychol. Sci. 2004, 13, 173–176.
[110]  Dumitriu, D.; Rapp, P.R.; McEwen, B.S.; Morrison, J.H. Estrogen and the aging brain: an elixir for the weary cortical network. Ann. N Y Acad. Sci. 2010, 1204, 104–112.
[111]  Norbury, R.; Cutter, W.J.; Compton, J.; Robertson, D.M.; Craig, M.; Whitehead, M.; Murphy, D.G. The neuroprotective effects of estrogen on the aging brain. Exp. Gerontol. 2008, 38, 109–117.
[112]  Silvia, I.; Mor, G.; Naftolin, F. Estrogen and the aging brain. Maturitas 2001, 38, 95–100.
[113]  Thakur, M.K.; Sharma, P.K. Aging of brain: Role of estrogen. Neurochemical Res. 2006, 31, 1389–1398.
[114]  Schilder, C.M.; Schagen, S.B. Effects of hormonal therapy on cognitive functioning in breast cancer patients: A review of the literature. Minerva Ginecol. 2007, 59, 387–401.
[115]  Maier, S.F.; Watkins, L.R. Immune-to-central nervous system communication and its role in modulating pain and cognition: Implications for cancer and cancer treatment. Brain Behav. Immun. 2003, 17, 125–131.
[116]  Vardy, J.; Booth, C.; Pond, G.R.; Zhang, H.; Galica, J.; Dhillon, H.; Clarke, S.J.; Tannok, I.F. Cytokine levels in patients (pts) with colorectal cancer and breast cancer and their relationship to fatigue and cognitive function. J. Clin. Oncol. 2007, 25, 9070.
[117]  Kesler, S.; Janelsins, M.; Kooyakkattu, D.; Palesh, O.; Mustian, K.; Morrow, G; Dhabhar, F.S. Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav. Immun. 2012. 1016/j.bbi.2012.05.017.
[118]  Noal, S.; Levy, C.; Hardouin, A.; Rieux, C.; Heutte, N.; Ségura, C.; Collet, F.; Allouache, D.; Switsers, O.; Delcambre, C.; Delozier, T.; Henry-Amar, M.; Joly, F. One-year longitudinal study of fatigue, cognitive functions, and quality of life after adjuvant radiotherapy for breast cancer. Int J. Radiat. Oncol. Biol. Phys. 2011, 81, 795–803.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133