全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

DNA-Based Sensor for Real-Time Measurement of the Enzymatic Activity of Human Topoisomerase I

DOI: 10.3390/s130404017

Keywords: real-time activity measurement, DNA sensor, fluorophore-quencher pair, topoisomerase I, cancer treatment, camptothecin

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sensors capable of quantitative real-time measurements may present the easiest and most accurate way to study enzyme activities. Here we present a novel DNA-based sensor for specific and quantitative real-time measurement of the enzymatic activity of the essential human enzyme, topoisomerase I. The basic design of the sensor relies on two DNA strands that hybridize to form a hairpin structure with a fluorophore-quencher pair. The quencher moiety is released from the sensor upon reaction with human topoisomerase I thus enabling real-time optical measurement of enzymatic activity. The sensor is specific for topoisomerase I even in raw cell extracts and presents a simple mean of following enzyme kinetics using standard laboratory equipment such as a qPCR machine or fluorimeter. Human topoisomerase I is a well-known target for the clinically used anti-cancer drugs of the camptothecin family. The cytotoxic effect of camptothecins correlates directly with the intracellular topoisomerase I activity. We therefore envision that the presented sensor may find use for the prediction of cellular drug response. Moreover, inhibition of topoisomerase I by camptothecin is readily detectable using the presented DNA sensor, suggesting a potential application of the sensor for first line screening for potential topoisomerase I targeting anti-cancer drugs.

References

[1]  Deng, J.; Jin, Y.; Wang, L.; Chen, G.; Zhang, C. Sensitive detection of endonuclease activity and inhibition using gold nanorods. Biosens. Bioelectron. 2012, 34, 144–150.
[2]  Katz, R.A.; Merkel, G.; Andrake, M.D.; Roder, H.; Skalka, A.M. Retroviral integrases promote fraying of viral DNA ends. J. Biol. Chem. 2011, 286, 25710–25718.
[3]  Lee, S.; Jung, S.R.; Heo, K.; Byl, J.A.; Deweese, J.E.; Osheroff, N.; Hohng, S. DNA cleavage and opening reactions of human topoisomerase IIalpha are regulated via Mg2+-mediated dynamic bending of gate-DNA. Proc. Natl. Acad. Sci. USA 2012, 109, 2925–2930.
[4]  Lin, H.H.; Huang, C.Y. Characterization of flavonol inhibition of DnaB helicase: Real-time monitoring, structural modeling, and proposed mechanism. J. Biomed. Biotechnol. 2012, doi:10.1155/2012/735368.
[5]  Metelev, V.; Zhang, S.; Tabatadze, D.; Bogdanov, A. Hairpin-like fluorescent probe for imaging of NF-kappaB transcription factor activity. Bioconj. Chem. 2011, 22, 759–765.
[6]  Noble, E.; Cox, A.; Deval, J.; Kim, B. Endonuclease substrate selectivity characterized with full-length PA of influenza A virus polymerase. Virology 2012, 433, 27–34.
[7]  Svilar, D.; Vens, C.; Sobol, R.W. Quantitative, real-time analysis of base excision repair activity in cell lysates utilizing lesion-specific molecular beacons. J. Vis. Exp. 2012, 66, doi:10.3791/4168.
[8]  Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem. 2001, 70, 369–413.
[9]  Leppard, J.B.; Champoux, J.J. Human DNA topoisomerase I: Relaxation, roles, and damage control. Chromosoma 2005, 114, 75–85.
[10]  Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer 2006, 6, 789–802.
[11]  Ikeguchi, M.; Arai, Y.; Maeta, Y.; Ashida, K.; Katano, K.; Wakatsuki, T. Topoisomerase I expression in tumors as a biological marker for CPT-11 chemosensitivity in patients with colorectal cancer. Surg. Today 2011, 41, 1196–1199.
[12]  Wethington, S.L.; Wright, J.D.; Herzog, T.J. Key role of topoisomerase I inhibitors in the treatment of recurrent and refractory epithelial ovarian carcinoma. Expert Rev. Anticancer Ther. 2008, 8, 819–831.
[13]  Champoux, J.J. Structure-based analysis of the effects of camptothecin on the activities of human topoisomerase I. Ann. N. Y. Acad. Sci. 2000, 922, 56–64.
[14]  Redinbo, M.R.; Champoux, J.J.; Hol, W.G. Structural insights into the function of type IB topoisomerases. Curr. Opin. Struct. Biol. 1999, 9, 29–36.
[15]  Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B., Jr.; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. USA 2002, 99, 15387–15392.
[16]  Pommier, Y. DNA topoisomerase I and II in cancer chemotherapy: Update and perspectives. Cancer Chemother. Pharmacol. 1993, 32, 103–108.
[17]  Postma, C.; Koopman, M.; Buffart, T.E.; Eijk, P.P.; Carvalho, B.; Peters, G.J.; Ylstra, B.; van Krieken, J.H.; Punt, C.J.; Meijer, G.A. DNA copy number profiles of primary tumors as predictors of response to chemotherapy in advanced colorectal cancer. Ann. Oncol. 2009, 20, 1048–1056.
[18]  Kjeldsen, E.; Bonven, B.J.; Andoh, T.; Ishii, K.; Okada, K.; Bolund, L.; Westergaard, O. Characterization of a camptothecin-resistant human DNA topoisomerase I. J. Biol. Chem. 1988, 263, 3912–3916.
[19]  Urasaki, Y.; Laco, G.S.; Pourquier, P.; Takebayashi, Y.; Kohlhagen, G.; Gioffre, C.; Zhang, H.; Chatterjee, D.; Pantazis, P.; Pommier, Y. Characterization of a novel topoisomerase I mutation from a camptothecin-resistant human prostate cancer cell line. Cancer Res. 2001, 61, 1964–1969.
[20]  Koster, D.A.; Croquette, V.; Dekker, C.; Shuman, S.; Dekker, N.H. Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 2005, 434, 671–674.
[21]  Koster, D.A.; Palle, K.; Bot, E.S.; Bjornsti, M.A.; Dekker, N.H. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 2007, 448, 213–217.
[22]  Lisby, M.; Krogh, B.O.; Boege, F.; Westergaard, O.; Knudsen, B.R. Camptothecins inhibit the utilization of hydrogen peroxide in the ligation step of topoisomerase I catalysis. Biochemistry 1998, 37, 10815–10827.
[23]  Bjornsti, M.A.; Benedetti, P.; Viglianti, G.A.; Wang, J.C. Expression of human DNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I: Restoration of sensitivity of the cells to the antitumor drug camptothecin. Cancer Res. 1989, 49, 6318–6323.
[24]  Knudsen, B.R.; Straub, T.; Boege, F. Separation and functional analysis of eukaryotic DNA topoisomerases by chromatography and electrophoresis. J. Chromatogr. B Biomed. Appl. 1996, 684, 307–321.
[25]  Hede, M.S.; Petersen, R.L.; Frohlich, R.F.; Kruger, D.; Andersen, F.F.; Andersen, A.H.; Knudsen, B.R. Resolution of Holliday junction substrates by human topoisomerase I. J. Mol. Biol. 2007, 365, 1076–1092.
[26]  Christiansen, K.; Svejstrup, A.B.; Andersen, A.H.; Westergaard, O. Eukaryotic topoisomerase I-mediated cleavage requires bipartite DNA interaction. Cleavage of DNA substrates containing strand interruptions implicates a role for topoisomerase I in illegitimate recombination. J. Biol. Chem. 1993, 268, 9690–9701.
[27]  Stewart, L.; Redinbo, M.R.; Qiu, X.; Hol, W.G.; Champoux, J.J. A model for the mechanism of human topoisomerase I. Science 1998, 279, 1534–1541.
[28]  Christiansen, K.; Westergaard, O. Characterization of intra- and intermolecular DNA ligation mediated by eukaryotic topoisomerase I. Role of bipartite DNA interaction in the ligation process. J. Biol. Chem. 1994, 269, 721–729.
[29]  Christiansen, K.; Knudsen, B.R.; Westergaard, O. The covalent eukaryotic topoisomerase I-DNA intermediate catalyzes pH-dependent hydrolysis and alcoholysis. J. Biol. Chem. 1994, 269, 11367–11373.
[30]  Stougaard, M.; Lohmann, J.S.; Mancino, A.; Celik, S.; Andersen, F.F.; Koch, J.; Knudsen, B.R. Single-molecule detection of human topoisomerase I cleavage-ligation activity. ACS Nano 2009, 3, 223–233.
[31]  Bender, M.L.; Begue-Canton, M.L.; Blakeley, R.L.; Brubacher, L.J.; Feder, J.; Gunter, C.R.; Kezdy, F.J.; Killheffer, J.V., Jr.; Marshall, T.H.; Miller, C.G.; et al. The determination of the concentration of hydrolytic enzyme solutions: Alpha-chymotrypsin, trypsin, papain, elastase, subtilisin, and acetylcholinesterase. J. Am. Chem. Soc. 1966, 88, 5890–5913.
[32]  Hartley, B.S.; Kilby, B.A. The reaction of p-nitrophenyl esters with chymotrypsin and insulin. Biochem. J. 1954, 56, 288–297.
[33]  Marangoni, A.G. Enzyme Kinetics: A Modern Approach; Wiley: Hoboken, NJ, USA, 2003.
[34]  Clapp, A.R.; Medintz, I.L.; Mattoussi, H. Forster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem 2006, 7, 47–57.
[35]  Medintz, I.L.; Mattoussi, H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys. Chem. Chem. Phys. 2009, 11, 17–45.
[36]  Algar, W.R.; Malonoski, A.; Deschamps, J.R.; Blanco-Canosa, J.B.; Susumu, K.; Stewart, M.H.; Johnson, B.J.; Dawson, P.E.; Medintz, I.L. Proteolytic activity at quantum dot-conjugates: Kinetic analysis reveals enhanced enzyme activity and localized interfacial “hopping”. Nano Lett. 2012, 12, 3793–3802.
[37]  Long, Y.; Zhang, L.F.; Zhang, Y.; Zhang, C.Y. Single quantum dot based nanosensor for renin assay. Anal. Chem. 2012, 84, 8846–8852.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133