A research prototype CT scanner is currently under development in our lab. One of the key components in this project is the CT detector. This paper describes the design and performance evaluation of the modular CT detector unit for our proposed scanner. It consists of a Photodiode Array Assembly which captures irradiating X-ray photons and converts the energy into electrical current, and a mini Data Acquisition System which performs current integration and converts the analog signal into digital samples. The detector unit can be easily tiled together to form a CT detector. Experiments were conducted to characterize the detector performance both at the single unit level and system level. The noise level, linearity and uniformity of the proposed detector unit were reported and initial imaging studies were also presented which demonstrated the potential application of the proposed detector unit in actual CT scanners.
Brenner, D.J.; Hall, E.J. Computed Tomography—An Increasing Source of Radiation Exposure. New Engl. J. Med. 2007, 357, 2277–2284.
[3]
AnalogDevice. ADAS1128 Data Sheet Rev SpC, Available online: http://www.analog.com/en/analog-to-digital-converters/ad-converters/adas1128/products/product.html (accessed on 25 January 2013).
[4]
Marple, S.L., Jr. A Tutorial Overview of Modern Spectral Estimation. Proceedings of International Conference on Acoustics, Speech, and Signal Processing, Glasgow, UK, 23–26 May 1989; pp. 2152–2157.
[5]
Jain, A. A Fast Karhunen-Loeve Transform for a Class of Random Processes. IEEE Trans. Commun. 1976, 24, 1023–1029.
[6]
Najim, M. Karhunen Loeve Transform. In Modeling, Estimation and Optimal Filtering in Signal Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 335–340.
[7]
Lawson, C.L.; Hanson, R.J. Analysis of the Least Squares Problem. In Solving Least Squares Problems; Society for Industrial and Applied Mathematics: Englewood Cliffs, NJ, USA, 1995; pp. 5–8.