全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A New Method for Flow Rate Measurement in Millimeter-Scale Pipes

DOI: 10.3390/s130201563

Keywords: flow rate measurement, Capacitively Coupled Contactless Conductivity Detection, cross correlation flow measurement, millimeter-scale pipes

Full-Text   Cite this paper   Add to My Lib

Abstract:

Combining the Capacitively Coupled Contactless Conductivity Detection (C 4D) technique and the principle of cross correlation flow measurement, a new method for flow rate measurement in millimeter-scale pipes was proposed. The research work included two parts. First, a new five-electrode C 4D sensor was developed. Second, with two conductivity signals obtained by the developed sensor, the flow rate measurement was implemented by using the principle of cross correlation flow measurement. The experimental results showed that the proposed flow rate measurement method was effective, the developed five-electrode C 4D sensor was successful, and the measurement accuracy was satisfactory. In five millimeter-scale pipes with different inner diameters of 0.5, 0.8, 1.8, 3.0 and 3.9 mm respectively, the maximum relative difference of the flow rate measurement between the reference flow rate and the measured flow rate was less than 5%.

References

[1]  Goldstein, R.J. Fluid Mechanics Measurements, 2nd ed. ed.; Taylor & Francis: Philadelphia, PA, USA, 1996.
[2]  Nakra, B.C.; Chaudhry, K.K. Instrumentation, Measurement and Analysis, 2nd ed. ed.; Tata McGraw-Hill Education: New Delhi, India, 2004; p. 289.
[3]  Pereira, M. Flow meters: Part 1. IEEE Instru. Meas. Mag. 2009, 12, 18–26.
[4]  Baker, R.C. Flow Measurement Handbook; Cambridge University Press: New York, NY, USA, 2000.
[5]  Spitzer, D.W. Industrial Flow Measurement, 3rd ed. ed.; The Instrumentation, Systems, and Automation Society (ISA): New York, NY, USA, 2005.
[6]  Kandlikar, S.G. Fundamental issues related to flow boiling in minichannels and microchannels. Exp. Therm. Fluid Sci. 2002, 26, 389–407.
[7]  Bergles, E. Boiling and evaporation in small diameter channels. Heat Transf. Eng. 2003, 24, 18–40.
[8]  Kandlikar, S.G. Heat Transfer and Fluid Flow in Minichannels and Microchannels; Elsevier: Oxford, UK, 2006; pp. 1–136.
[9]  Sproston, J.L. Flow measurement-future directions. Sens. Rev. 2002, 22, 190–191.
[10]  Smith, J. Flowmeter review. Sens. Rev. 1995, 15, 11–14.
[11]  Pereira, M. Tutorial 20: Flow meters: Part2. IEEE Instru. Meas. Mag. 2009, 12, 18–26.
[12]  Sokolov, M.; Mashaal, M. Velocity measurements in slow flow by the conductance-tracer method. Exp. Fluids 1990, 9, 252–256.
[13]  Lucas, G.P.; Cory, J.C.; Waterfall, R.C. A six-electrode local probe for measuring solids velocity and volume fraction profiles in solids-water flows. Meas. Sci. Technol. 2000, 11, 1498–1509.
[14]  Zemann, A.J.; Schnell, E.; Volgger, D.; Bonn, G.K. Contactless conductivity detection for capillary electrophoresis. Anal. Chem. 1998, 70, 563–567.
[15]  da Silva, J.A.F.; do Lago, C.L. An oscillometric detector for capillary electrophoresis. Anal. Chem. 1998, 70, 4339–4343.
[16]  Gas, B.; Demjanenko, M.; Vacik, J. High-frequency contactless conductivity detection in isotachophoresis. J. Chromatogr. A 1980, 192, 253–257.
[17]  Kuban, P.; Hauser, P.C. A review of the recent achievements in capacitively coupled contactless conductivity detection. Anal. Chim. Acta 2008, 607, 15–29.
[18]  Huang, Z.Y.; Jiang, W.W.; Zhou, X.M.; Wang, B.L.; Ji, H.F.; Li, H.Q. A new method of capacitively coupled contactless conductivity detection based on series resonance. Sens. Actuators B 2009, 143, 239–245.
[19]  Huang, Z.Y.; Long, J.; Xu, W.B.; Ji, H.F.; Wang, B.L.; Li, H.Q. Design of Capacitively Coupled Contactless Conductivity Detection Sensor. Flow Meas. Instrum. 2012, 27, 67–70.
[20]  Shih, C.-Y.; Li, W.; Zheng, S.Y.; Tai, Y.-C. A resonance-induced sensitivity enhancement method for conductivity sensors. Proceedings of 5th IEEE Conference on Sensors, Daegu, Korea, 22–25 October 2006; pp. 271–274.
[21]  Kuban, P.; Hauser, P.C. Capacitively coupled contactless conductivity detection for microseparation techniques-recent developments. Electrophoresis 2011, 32, 30–42.
[22]  Coltro, W.K.T.; Lima, R.S.; Segato, T.P.; Carrilho, E. Capacitively coupled contactless conductivity detection on microfluidic systems—Ten years of development. Anal. Methods 2012, 4, 25–33.
[23]  Brito-Neto, J.; Fracassi da Silva, J.; Blanes, L.; do Lago, C. Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part I. Fundamentals. Electroanalysis 2005, 17, 1198–1206.
[24]  Pumera, M. Contactless conductivity detection for microfluidics: Designs and applications. Talanta 2007, 74, 358–364.
[25]  Laugere, F.; Lubking, G.W.; Bastemeijer, J.; Vellekoop, M.J. Design of an electronic interface for capacitively coupled four-electrode conductivity detection in capillary electrophoresis microchip. Sens. Actuators B 2002, 83, 104–108.
[26]  Laugere, F.; Lubking, G.W.; Berthold, A.; Bastemeijer, J.; Vellekoop, M.J. Downscaling aspects of a conductivity detector for application in on-chip capillary electrophoresis. Sens. Actuators A 2001, 92, 109–114.
[27]  Laugere, F.; Guijt, R.M.; Bastemeijer, J.; Steen, G.V.D.; Berthold, A; Baltussen, E.; Sarro, P.; van Dedem, G.W.; Vellekoop, M.; Bosschet, A. On-chip contactless four-electrode conductivity detection for capillary electrophoresis devices. Anal. Chem. 2003, 75, 306–312.
[28]  Bastemeijer, J.; Lubking, W.; Laugere, F.; Vellekoop, M. Electronic protection methods for conductivity detectors in micro capillary electrophoresis devices. Sens. Actuators B 2002, 83, 98–103.
[29]  Xu, L.A. Cross-Correlation Flow Measurement Technique; Tianjin University Press: Tianjin, China, 1988.
[30]  Worch, A. A clamp-on ultrasonic cross correlation flow meter for one-phase flow. Meas. Sci. Technol. 1998, 9, 622–630.
[31]  Beck, M.S.; Plaskowski, A. Cross Correlation Flowmeters—Their Design and Application; Adam Hilger: Bristol, UK, 1987.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133