In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu 2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.
References
[1]
Karimov, K.S.; Saleem, M.; Karieva, Z.; Mateen, A.; Chani, M.T.S.; Zafar, Q. Humidity sensing properties of Cu2O-PEPC nanocomposite films. J. Semicond. 2012, 33, 073001.
[2]
Aziz, F.; Hassan Sayyad, M.; Sulaiman, K.; Majlis, B.; Karimov, K.S.; Ahmad, Z.; Sugandi, G. IOPscience-Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol. 2012, 23, 014001.
[3]
Ahmad, Z.; Abdullah, S.M.; Sulaiman, K. Temperature-sensitive chemical cell based on Nickel (II) phthalocyanine-tetrasulfonic acid tetrasodium salt. Sens. Actuat. A: Phys. 2012, 179, 146.
[4]
Ahmad, Z.; Sayyad, M.H.; Yaseen, M.; Aw, K.C.; M-Tahir, M.; Ali, M. Potential of 5,10,15,20-Tetrakis(3′,5′-di-tertbutylphenyl)porphyrinatocopper(II) for a multifunctional sensor. Sens. Actuators B: Chem. 2011, 155, 81–85.
[5]
Sayyad, M.H.; Shah, M.; Karimov, K.S.; Ahmad, Z.; Saleem, M.; Tahir, M.M. Fabrication and study of NiPc thin film based surface type photocapacitors. J. Optoelectron. Adv. Mater. 2008, 10, 2805–2810.
[6]
Ahmad, Z.; Sayyad, M.H.; Saleem, M.; Karimov, K.S.; Shah, M. Humidity dependent characteristics of methyl-red thin film based Ag/methylred/Ag surface type cell. Physica E 2008, 41, 18–22.
[7]
Li, L.; Yu, K.; Wu, J.; Wang, Y.; Zhu, Z. Structure and humidity sensing properties of SnO2 zigzag belts. Cryst. Res. Tech. 2010, 45, 539–544.
[8]
Rittersma, Z.; Zaagman, W.; Zetstra, M.; Benecke, W. A monitoring instrument with capacitive porous silicon humidity sensors. Smart Mater. Struct. 2000, 9, 351.
[9]
Yarkin, D. Impedance of humidity sensitive metal/porous silicon/n-Si structures. Sens. Actuators A: Phys. 2003, 107, 1–6.
[10]
Lee, C.Y.; Lee, G.B. Humidity sensors: A review. Sensor Lett. 2005, 3, 1–15.
[11]
Rittersma, Z. Recent achievements in miniaturised humidity sensors—A review of transduction techniques. Sens. Actuat. A: Phys. 2002, 96, 196–210.
[12]
Chen, Z.; Lu, C. Humidity sensors: a review of materials and mechanisms. Sens. Lett. 2005, 3, 274–295.
[13]
Lin, C.H.; Chen, C.H. Sensitivity enhancement of capacitive-type photoresistor-based humidity sensors using deliquescent salt diffusion method. Sens. Actuators B: Chem. 2008, 129, 531–537.
[14]
Korvink, J.G.; Chandran, L.; Boltshauser, T.; Baltes, H. Accurate 3D Capacitance evaluation in Integrated Capacitance Humidity Sensors. Sens. Mater. 1993, 4, 323–335.
[15]
Shah, M.; Sayyad, M.H.; Karimov Kh, S. Fabrication and study of nickel phthalocyanine based surface-type capacitive sensors. Proc. World Acad. Sci. Eng. Technol. 2008, 43, 392.
[16]
Karimov, K.S.; Cheong, K.Y.; Saleem, M.; Murtaza, I.; Farooq, M.; Noor, A.F.M. Ag/PEPC/NiPc/ZnO/Ag thin film capacitive and resistive humidity sensors. J. Semicon. 2010, 31, 054002.
[17]
Akhmedov, K.M.; Karimov, K.S.; Shcherbakova, I.; Porshnev, Y.N.; Cherkashin, M.I. The synthesis and properties of N-(2, 3-epoxypropyl) carbazoles and the oligomers based on them. Russ. Chem. Rev. 1990, 59, 425–439.
[18]
Karimov, K.S.; Qazi, I.; Khan, T.; Draper, P.; Khalid, F.; Mahroof-Tahir, M. Humidity and illumination organic semiconductor copper phthalocyanine sensor for environmental monitoring. Environ. Monit. Assess. 2008, 141, 323–328.
[19]
Aziz, F.; Sayyad, M.; Karimov, K.S.; Saleem, M.; Ahmad, Z.; Khan, S.M. Characterization of vanadyl phthalocyanine based surface-type capacitive humidity sensors. J. Semicon. 2010, 31, 114002.
[20]
Omar, M.A. Elementary Solid State Physics: Principles and Applications; Addison-Wesley: Reading, MA, USA, 1975.
[21]
Baeg, K.J.; Facchetti, A.; Noh, Y.Y. Effects of gate dielectrics and their solvent on characteristics of printed n-channel polymer field-effect transistors. J. Mater. Chem. 2012, 22, 21138.
[22]
Jonscher, A. Low-frequency dispersion in carrier-dominated dielectri. Phil. Mag. B 1978, 38, 587–601.
[23]
Khan, A.; Karimov, K.S.; Shah, M. Resistance Pressure Sensor Based on Ag/Cu2O-PEPC-NiPc/Al Composite. Key Eng. Mater. 2012, 510, 413–419.