Sampling is one of the main issues pertaining to odor characterization and measurement. The aim of sampling is to obtain representative information on the typical characteristics of an odor source by means of the collection of a suitable volume fraction of the effluent. The most important information about an emission source for odor impact assessment is the so-called Odor Emission Rate (OER), which represents the quantity of odor emitted per unit of time, and is expressed in odor units per second (ou?s ?1). This paper reviews the different odor sampling strategies adopted depending on source type. The review includes an overview of odor sampling regulations and a detailed discussion of the equipment to be used as well as the mathematical considerations to be applied to obtain the OER in relation to the sampled source typology.
References
[1]
Nicell, J.A. Assessment and regulation of odour impacts. Atmos. Environ. 2009, 43, 196–206.
[2]
Feilberg, A.; Adamsen, A.P.S.; Lindholst, S.; Lyngbye, M.; Sch?fer, A. Evaluation of biological air filters for livestock ventilation air by membrane inlet mass spectrmetry. J. Environ. Qual. 2010, 39, 1085–1096.
[3]
Van Huffel, K.; Heynderickx, P.M.; Dewulf, J.; Van Langenhove, H. Measurement of odorants in livestock buildings: SIFT-MS and TD-GC-MS. Chem. Eng. Trans. 2012, 30, 67–72.
[4]
Feilberg, A.; Liu, D.; Adamsen, A.P.S.; Hansen, M.J.; Jonassen, K.E.N. Odorant emissions from intensive pig production measured by online proton-transfer-reaction mass spectrometry. Environ. Sci. Technol. 2010, 44, 5894–5900.
[5]
Cappellin, L.; Biasioli, F.; Fabris, A.; Schuhfried, E.; Soukoulis, C.; M?rk, T.D.; Gasperi, F. Improved mass accuracy in PTR-TOF-MS: Another step towards better compound identification in PTR-MS. Int. J. Mass Spectrom. 2010, 290, 60–63.
[6]
Graus, M.; Müller, M.; Hansel, A. High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time. J. Am. Soc. Mass. Spectrom. 2010, 21, 1037–1044.
[7]
Littarru, P. Environmental odours assessment from waste treatment plants: Dynamic olfactometry in combination with sensorial analysers “electronic noses”. Waste Manage 2007, 27, 302–309.
[8]
Stuetz, R.M.; Fenner, R.A.; Engin, G. Assessment of odours from sewage treatment works by an electronic nose, H2S analysis and olfactometry. Water Res. 1999, 33, 453–461.
[9]
Kim, K.-H.; Park, S.-Y. A comparative analysis of malodor samples between direct (olfactometry) and indirect (instrumental) methods. Atmos. Environ. 2008, 42, 5061–5070.
[10]
Kim, K.-H. Experimental demonstration of masking phenomenon between competing odorants via an air dilution sensory test. Sensors 2010, 10, 7287–7302.
[11]
Kim, K.-H. The averaging effect of odorant mixing via air dilution sensory test: A case study on reduced sulfur compounds. Sensors 2011, 11, 1405–1417.
[12]
Air Quality—Determination of Odour Concentration by Dynamic Olfactometry. CEN. EN 13725:2003; Comité Euopéen de Normalisation: Brussels, Belgium, 2007.
[13]
Capelli, L.; Sironi, S.; Del Rosso, R.; Céntola, P.; Bonati, S. Improvement of olfactometric measurement accuracy and repeatability by optimization of panel selection procedures. Water Sci. Technol. 2010, 61, 1267–1278.
[14]
Van Harreveld, A.P.; Heeres, P.; Harssema, H. A review of 20 years of standardization of odor concentration measurement by dynamic olfactometry. J. Air Waste Manage. 1999, 49, 705–715.
[15]
Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148.
[16]
Capelli, L.; Sironi, S.; Del Rosso, R.; Céntola, P.; Grande, M., II. A comparative and critical evaluation of odour assessment methods on a landfill site. Atmos. Environ. 2008, 42, 7050–7058.
[17]
Pearce, T.C. Computational parallels between the biological olfactory pathway and its analogue ‘The Electronic Nose’: Part II. Sensor-based machine olfaction. Biosystems 1997, 41, 69–90.
[18]
Nicolas, J.; Romain, A.C.; Ledent, C. The electronic nose as a warning device of the odour emergence in a compost hall. Sens. Actuators B Chem. 2006, 116, 95–99.
[19]
Sironi, S.; Capelli, L.; Centola, P.; Del Rosso, R.; Grande, M., II. Continuous monitoring of odours from a composting plant using electronic noses. Waste Manag. 2007, 27, 389–397.
[20]
Sohn, J.H.; Pioggia, G.; Craig, I.P.; Stuetz, R.M.; Atzeni, M.G. Identifying major contributing sources to odour annoyance using a non-specific gas sensor array. Biosyst. Eng. 2009, 102, 305–312.
[21]
Sohn, J.H.; Atzeni, M.; Zeller, L.; Pioggia, G. Characterisation of humidity dependence of a metal oxide semiconductor sensor array using partial least squares. Sens. Actuators B Chem. 2008, 131, 230–235.
[22]
Romain, A.C.; Andre, P.; Nicolas, J. Three years experiment with the same tin oxide sensor arrays for the identification of malodorous sources in the environment. Sens. Actuators B Chem. 2002, 84, 271–277.
[23]
Brattoli, M.; De Gennaro, G.; De Pinto, V.; Demarinis Loiotile, A.; Lovascio, S.; Penza, M. Odour detection methods: olfactometry and chemical sensors. Sensors 2011, 11, 5290–5322.
[24]
Hudson, N.; Ayoko, G.A. Odour Sampling. 2. Comparison of physical and aerodynamic characteristics of sampling devices: A review. Bioresour. Technol. 2008, 99, 3993–4007.
Davoli, E.; Gangai, M.L.; Morselli, L.; Tonelli, D. Characterization of odorants emissions from landfills by SPME and GC/MS. Chemosphere 2003, 51, 357–368.
[28]
Kim, K.-H. Some insights into the gas chromatographic determination of reduced sulphur compounds (RSC) in air. Environ. Sci. Technol. 2005, 39, 6765–6769.
[29]
Beghi, S.; Guillot, J.M. Use of poly(ethylene terephtalate) film bag to sample and remove humidity from atmosphere containing volatile organic compounds. J. Chromatogr. A 2008, 1183, 1–5.
[30]
Koziel, J.A.; Spinhirne, J.P.; Lloyd, J.D.; Parker, D.B.; Wright, D.W.; Kuhrt, F.W. Evaluation of sample recovery of malodorous livestock gases from air sampling bags, solid-phase microextraction fibers, Tenax TA sorbent tubes, and sampling canisters. J. Air Waste Manag. Assoc. 2005, 55, 1147–1157.
[31]
Mochalski, P.; Wzorek, B.; Sliwka, I.; Amann, A. Suitability of different polymer bags for storage of volatile sulphur compounds relevant to breath analysis. J. Chromatogr. B 2009, 877, 189–196.
[32]
Zarra, T.; Reiser, M.; Naddeo, V.; Belgiorno, V.; Kranert, M. A comparative and critical evaluation of different sampling materials in the measurement of odour concentration by dynamic olfactometry. Chem. Eng. Trans. 2012, 30, 307–312.
[33]
Kim, K.-H.; Choi, Y.J.; Jeon, E.C.; Sunwoo, Y. Characterization of malodorous sulfur compounds in landfill gas. Atmos. Environ. 2005, 39, 1103–1112.
[34]
Loizidou, M.; Kapetanios, E.G. Study on the gaseous emissions from a landfill. Sci. Total Environ. 1992, 127, 201–210.
[35]
Zhang, L.; De Schryver, P.; De Gusseme, B.; Muynck, W.; Boon, N.; Verstraete, W. Chemical and biological technologies for hydrogen sulphide emission control in sewer systems: A review. Water Res. 2008, 42, 1–12.
[36]
Easter, C.; Quigley, C.; Burrowes, P.; Witherspoon, J.; Apgar, D. Odor and air emissions control using biotechnology for both collection and wastewater treatment systems. Chem. Eng. J. 2005, 113, 93–104.
[37]
Hobbs, P.J.; Misselbrook, T.H.; Cumby, T.R. Production and emission of odours and gases from ageing pig waste. J. Agric. Eng. Res. 1999, 72, 291–298.
[38]
Ji, S.; Wan, L.; Fan, Z. The Toxic compounds and leaching characteristics of spent foundry sands. Water Air Soil Pollut. 2013, 132, 347–364.
[39]
Sluis, N.I.; Vossen, F.J.H. Odour assessment at an iron foundry in the Netherlands. Proceedings of the 3rd International Water Association Conference on Odours and VOCs, Barcelona, Spain, 8–10 October 2008.
[40]
Juarez-Galan, J.M.; Martinez, J.V.; Amo, A.; Valor, I. Stability assurance of odour concentration by cryocondensation sampling. Chem. Eng. Trans. 2010, 23, 79–85.
[41]
Eklund, B.; Anderson, E.P.; Walker, B.L.; Burrows, D.B. Characterization of landfill gas composition at the fresh skills municipal solid-waste landfill. Environ. Sci. Technol. 1998, 32, 2233–2237.
[42]
Ghosh, S.; Kim, K.-H.; Sohn, J.R. Some insights into analytical bias involved in the application of grab sampling for volatile organic compounds: A case study against used Tedlar bags. Sci. World J. 2011, 11, 2160–2177.
[43]
Kim, K.-H.; Anthwal, A.; Sohn, J.R.; Heo, G.-S. The role of sample collection method and the bias between different standard matrices in the determination of volatile organic compounds in air. Microchim. Acta 2010, 170, 83–90.
[44]
Trabue, S.L.; Anhalt, J.C.; Zahn, J.A. Bias of tedlar bags in the measurements of agricultural odorants. J. Environ. Qual. 2006, 35, 1668–1677.
[45]
Juarez-Galan, J.M.; Martinez, J.V.; Amo, A.; Valor, I. Background odour from sampling bags. Influence in the analysis of the odour concentration. Chem. Eng. Trans. 2008, 15, 87–94.
[46]
Gostelow, P.; Longhurst, P.; Parsons, S.; Stuetz, R. Sampling for Measurement of Odours; IWA Publishing: London, UK, 2003.
[47]
Bockreis, A.; Steinberg, I. Measurement of odour with focus on sampling techniques. Waste Manag. 2005, 25, 859–863.
[48]
Bokowa, A.H.; Liu, H. Techniques for odour sampling of area and fugitive sources. Chem. Eng. Trans. 2008, 15, 57–62.
[49]
Kono, H.; Ito, S. A micro-scale dispersion model for motor vehicle exhaust gas in urban areas—OMG volume-source model. Atmos. Environ. B Urb. 1990, 24, 243–251.
[50]
Hanna, S.R.; Egan, B.A.; Purdum, J.; Wagler, J. Evaluation of the ADMS, AERMOD, and ISC3 dispersion models with the OPTEX, Duke Forest, Kincaid, Indianapolis and Lovett field datasets. Int. J. Environ. Pollut. 2010, 16, 301–314.
[51]
Picxof, S.P.; Masemore, S.S.; Lewis-Bevan, W.; Ringler, E.S.; Harris, D.B. Field assessment of a new method for estimating emission rates from volume sources using open-path FTIR spectroscopy. J. Air Waste Manag. Assoc. 1996, 46, 159–171.
[52]
VDI (Verein Deutscher Ingenieure). Biological Waste Gas Purification—Biofilters. VDI 3477; Beuth Verlag GmbH: Berlin, Germany, 2004.
Jiang, K.; Kaye, R. Comparison study on portable wind tunnel system and isolation chamber for determination of VOCs from areal sources. Water Sci. Technol. 1996, 34, 583–589.
[55]
Reinhart, D.R.; Cooper, D.C.; Walker, B.L. Flux chamber design and operation for the measurement of municipal solid waste gas emission rates. J. Air Waste Manag. Assoc. 1992, 42, 1067–1070.
[56]
Gholson, A.R.; Albritton, J.R.; Jayanty, R.K.; Knoll, J.E.; Midgett, M.R. Evaluation of an enclosure method for measuring emissions of volatile organic compounds from quiescent liquid surfaces. Environ. Sci. Technol. 1991, 25, 519–524.
[57]
Conen, F.; Smith, K.A. A re-examination of closed flux chamber methods for the measurement of trace gas emissions from soils to the atmosphere. Eur. J. Soil Sci. 1998, 49, 701–707.
[58]
Feilberg, A.; Nyord, T.; Hansen, M.N.; Lindholst, S. Chemical evaluation of odor reduction by soil injection of animal manure. J. Environ. Qual. 2011, 40, 1674–1682.
[59]
Jiang, J.K.; Bliss, P.J.; Schulz, T.J. The Development of a sampling system for determining odor emission rates from area surfaces: Part I. Aerodynamic performance. J. Air Waste Manag. Assoc. 1995, 45, 917–922.
[60]
Bliss, P.J.; Jiang, J.K.; Schulz, T.J. The development of a sampling system for determining odor emission rates from area surfaces: Part II. Mathematical model. J. Air Waste Manag. Assoc. 1995, 45, 989–994.
[61]
Frechen, F.B.; Frey, M.; Wett, M.; L?ser, C. Aerodynamic performance of a low-speed wind tunnel. Water Sci. Technol. 2004, 50, 57–64.
[62]
Capelli, L.; Sironi, S.; Del Rosso, R.; Céntola, P. Design and validation of a wind tunnel system for odour sampling on liquid area sources. Water Sci. Technol. 2009, 59, 1611–1620.
[63]
Thibodeaux, L.J.; Scott, H.D. Air/Soil Exchange Coefficients. In Environmental Exposure from Chemicals; Neely, Brock, Blau, G.E., Eds.; CRC Press, Inc.: Boca Raton, FL, USA, 1985. Volume I.
[64]
Sohn, J.H.; Smith, R.J.; Hudson, N.A.; Choi, H.L. Gas sampling efficiencies and aerodynamic characteristics of a laboratory wind tunnel for odour measurement. Biosyst. Eng. 2005, 92, 37–46.
[65]
Sironi, S.; Capelli, L.; Céntola, P.; Del Rosso, R.; Pierucci, S. Odour impact assessment by means of dynamic olfactometry, dispersion modelling and social participation. Atmos. Environ. 2010, 44, 354–360.
[66]
Zhang, H.; Lindberg, S.E.; Barnett, M.O.; Vette, A.F.; Gustin, M.S. Dynamic flux chamber measurement of gaseous emission fluxes over soils. Part 1: simulation of gaseous mercury emissions from soils using a two-resistance exchange interface model. Atmos. Environ. 2002, 36, 835–846.
[67]
VDI (Verein Deutscher Ingenieure). Determination of Odorants in Ambient Air by Field Inspections. VDI 3940 Part 2; Beuth Verlag GmbH: Berlin, Germany, 2006.
[68]
Guillot, J.M.; Bilsen, I.; Both, R.; Hangartner, M.; Kost, W.J.; Kunz, W.; Nicolas, J.; Oxbol, A.; Secanella, J.; Van Belois, H.; Van Elst, T.; Van Harreveld, T.; Milan, B. The future European standard to determine odour in ambient air by using field inspection. Water Sci. Technol. 2012, 66, 1691–1698.
[69]
Guillot, J.M. Odour Measurement: Focus on main remaining limits due to sampling. Chem. Eng. Trans. 2012, 30, 295–300.
[70]
Capelli, L.; Sironi, S.; Barczak, R.; Grande, M., II; Del Rosso, R. Validation of a method for odor sampling on solid area sources. Water Sci. Technol. 2012, 66, 1607–1613.
[71]
Santos, J.M.; Kreim, V.; Guillot, J.M.; Costa Reis, N., Jr.; Melo de Sá, L.; Horan, N.J. An experimental determination of the H2S overall mass transfer coefficient from quiescent surfaces at wastewater treatment plants. Atmos. Environ. 2012, 60, 18–24.
[72]
Hansen, M.J.; Adamsen, A.P.S.; Feilberg, A.; Jonassen, K.E.N. Stability of odorants from pig production in sampling bags for olfactometry. J. Environ. Qual. 2011, 40, 1096–1102.
[73]
Parker, D.B.; Perschbacher-Buser, Z.L.; Cole, N.A.; Koziel, J.A. Recovery of agricultural odors and odorous compounds from polyvinyl fluoride film bags. Sensors 2010, 10, 8536–8552.