全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Autonomous Docking Based on Infrared System for Electric Vehicle Charging in Urban Areas

DOI: 10.3390/s130202645

Keywords: autonomous parking, electric vehicle, vision systems, docking system, lateral control

Full-Text   Cite this paper   Add to My Lib

Abstract:

Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris.

References

[1]  Lin, B.F.; Chan, Y.M.; Fu, L.C.; Hsiao, P.Y.; Chuang, L.A.; Huang, S.S. Incorporating Appearance and Edge Features for Vehicle Detection in the Blind-Spot Area. Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), Madeira Island, Portugal, 19–22 September 2010; pp. 869–874.
[2]  Bansal, M.; Das, A.; Kreutzer, G.; Eledath, J.; Kumar, R.; Sawhney, H. Vision-based Perception for Autonomous Urban Navigation. Proceedings of the IEEE International Conference on Intelligent Transportation Systems (ITSC), Beijing, China, 12–15 October 2008; pp. 434–440.
[3]  Puthon, A.S.; Nashashibi, F.; Bradai, B. A Complete System to Determine the Speed Limit by Fusing a GIS and a Camera. Proceedings of 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011; pp. 1686–1691.
[4]  Llorca, D.F.; Milanés, V.; Alonso, I.P.; Gavilán, M.; Daza, I.G.; Pérez, J.; Sotelo, M.A. Autonomous pedestrian collision avoidance using a fuzzy steering Controller. IEEE Trans. Intell. Transp. Syst. 2011, 12, 390–401.
[5]  Paromtchik, I.; Laugier, C. Motion Generation and Control for Parking an Autonomous Vehicle. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Minneapolis, MN, USA, 22–28 April 1996. Volume 4; pp. 3117–3122.
[6]  Final Report: Study on Clean Transport Systems. Technical Report; European Commission, Directorate-General for Mobility and Transport: Athens, Greece, 2011.
[7]  Xia, T.; Yang, M.; Yang, R.; Wang, C. CyberC3: A prototype cybernetic transportation system for urban applications. IEEE Trans. Intell. Transp. Syst. 2011, 11, 142–152.
[8]  Bouraoui, L.; Boussard, C.; Charlot, F.; Holguin, C.; Nashashibi, F.; Parent, M.; Resende, P. An On-Demand Personal Automated Transport System: The CityMobil Demonstration in La Rochelle. Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 1086–1091.
[9]  Harris, A. Charge of the electric car-[power electric vehicles]. Eng. Technol. 2009, 4, 52–53.
[10]  Budhia, M.; Covic, G.; Boys, J. A New IPT Magnetic Coupler for Electric Vehicle Charging Systems. Proceedings of the 36th Annual Conference on IEEE Industrial Electronics Society (IECON), Glendale, AZ, USA, 7–10 November 2010; pp. 2487–2492.
[11]  Etezadi-Amoli, M.; Choma, K.; Stefani, J. Rapid-charge electric-vehicle stations. IEEE Trans. Power Deliv. 2010, 25, 1883–1887.
[12]  Naranjo, J.; Bouraoui, L.; Garcia, R.; Parent, M.; Sotelo, M. Interoperable control architecture for cybercars and dual-mode cars. IEEE Trans. Intell. Transp. Syst. 2009, 10, 146–154.
[13]  Bouraoui, L.; Petti, S.; Laouiti, A.; Fraichard, T.; Parent, M. Cybercar Cooperation for Safe Intersections. Proceedings of the IEEE International Conference on Intelligent Transportation Systems Conference (ITSC), Toronto, Canada, 17–20 September 2006; pp. 456–461.
[14]  Moriwaki, K. Mathematical Modeling and Control of an Autonomous Electric Vehicle for Navigation and Guidance. Proceedings of the IEEE International Electric Vehicle Conference (IEVC), Greenville, SC, USA, 4–8 March 2012; pp. 1–8.
[15]  Yih, P.; Gerdes, J.C. Modification of vehicle handling characteristics via steer-by-wire. IEEE Trans. Control Syst. Techn. 2005, 13, 965–976.
[16]  Pérez, J.; Gajate, A.; Milanés, V.; Onieva, E.; Santos, M. Design and Implementation of a Neuro-Fuzzy System for Longitudinal Control of Autonomous Vehicles. Proceedings of the IEEE World Congress on Computational Intelligence WCCI 2010, Barcelona, Spain, 18–23 July 2010; pp. 1–5.
[17]  Milanés, V.; Naranjo, J.; Gonzalez, C.; Alonso, J.; de Pedro, T. Autonomous vehicle based in cooperative GPS and inertial systems. Robotica 2008, 26, 627–633.
[18]  Mao, X.; Wada, M.; Hashimoto, H. Nonlinear GPS Models for Position Estimate Using Low-Cost GPS Receiver. Proceedings Intelligent Transportation Systems Conference (ITSC), Shanghai, China, 12–15 October 2003. Volume 1; pp. 637–642.
[19]  Xie, J.; Nashashibi, F.; Parent, M.; Favrot, O. A Real-Time Robust Global Localization for Autonomous Mobile Robots in Large Environments. Proceedings of the 11th International Conference on Control Automation Robotics Vision (ICARCV), Singapore, 7–10 December 2010; pp. 1397–1402.
[20]  Zhang, X.; Rad, A.; Wong, Y. Sensor fusion of monocular cameras and laser rangefinders for line-based simultaneous localization and mapping (SLAM) tasks in autonomous mobile robots. Sensors 2012, 12, 429–452.
[21]  Jia, Z.; Balasuriya, A.; Challa, S. Autonomous vehicles navigation with visual target tracking: Technical approaches. Sensors 2008, 1, 153–182.
[22]  Silverman, M.; Nies, D.; Jung, B.; Sukhatme, G. Staying Alive: A Docking Station for Autonomous Robot Recharging. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Washington, DC, USA, 11–15 May 2002. Volume 1; pp. 1050–1055.
[23]  Cassinis, R.; Tampalini, F.; Bartolini, P.; Fedrigotti, R. Docking and Charging System for Autonomous Mobile Robots; Department of Electronics for Automation, University of Brescia: Brescia, Italy, 2005.
[24]  Luo, R.; Liao, C.; Su, K.; Lin, K. Automatic Docking and Recharging System for Autonomous Security Robot. Proceedings of the IEEE /RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, AB, Canada, 2–6 August 2005; pp. 2953–2958.
[25]  Singh, H.; Bellingham, J.; Hover, F.; Lemer, S.; Moran, B.; von der Heydt, K.; Yoerger, D. Docking for an autonomous ocean sampling network. IEEE J. Ocean. Eng. 2001, 26, 498–514.
[26]  Bleijs, C.; Normand, O. A Fully Automatic Station Using Inductive Charging Techniques. Proceedings of the Thrirteeth International Symposium on Electric Vehicle, Osaka, Japan, 13–16 October 1996.
[27]  Wong, J.; Nejat, G.; Fenton, R.; Benhabib, B. A neural-network approach to high-precision docking of autonomous vehicles/platforms. Robotica 2007, 25, 479–492.
[28]  Martin, J. Design for Implementation: Fully Integrated Charging & Docking Infrastructure Used in Mobility-on-Demand Electric Vehicle Fleets. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012.
[29]  Petrov, P.; Boussard, C.; Ammoun, S.; Nashashibi, F. A Hybrid Control for Automatic Docking of Electric Vehicles for Recharging. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), St. Paul, MN, USA, 14–18 May 2012; pp. 2966–2971.
[30]  DeMenthon, D.F.; Davis, L.S. Model-based object pose in 25 lines of code. Int. J. Comput. Vision 1995, 15, 123–141.
[31]  Fliess, M.; Join, C.; Sira-Ramirez, H. Non-linear estimation is easy. Int. J. Model. Identif. Control 2008, 4, 12–27.
[32]  Fliess, M.; Sira-Ramírez, H. An algebraic framework for linear identification. ESAIM Control Optim. Calc. Var. 2003, 9, 151–168.
[33]  Mboup, M.; Join, C.; Fliess, M. Numerical differentiation with annihilators in noisy environment. Numer. Algorithms 2009, 50, 439–467.
[34]  Villagrá, J.; Milanes, V.; Pérez, J.; Godoy, J. Smooth path and speed planning for an automated public transport vehicle. Robot. Auton. Syst. 2012, 60, 252–265.
[35]  Pérez, J.; Milanés, V.; Onieva, E. Cascade architecture for lateral control in autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2011, 12, 73–82.
[36]  Ackermann, T.B.J.; Bünte, T. Robust prevention of limit cycles for robustly decoupled car steering dynamics. Kybernetika 1999, 35, 105–116.
[37]  Sotelo, M.A. Lateral control strategy for autonomous steering of Ackerman-like vehicles. Robot. Auton. Syst. 2003, 45, 223–233.
[38]  Pérez, J.; Milanes, V.; de Pedro, T.; Vlacic, L. Autonomous Driving Manoeuvres in Urban Road Traffic Environment: A Study on Roundabouts. Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC), Milano, Italy, 28 August–2 September 2011; pp. 1–5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133