全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Photonic Crystal Sensors Based on Porous Silicon

DOI: 10.3390/s130404694

Keywords: photonic crystal, porous silicon, sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

References

[1]  Qazi, H.H.; bin Mohammad, A.; Akram, M. Recent progress in optical chemical sensors. Sensors 2012, 12, 16522–16556.
[2]  Kedem, O.; Vaskevich, A.; Rubinstein, I. Comparative assessment of the sensitivity of localized surface plasmon resonance transducers and interference-based Fabry-Perot transducers. Ann. Phys. 2012, 524, 713–722.
[3]  Lin, V.S.Y.; Motesharei, K.; Dancil, K.P.S.; Sailor, M.J.; Ghadiri, M.R. A porous silicon-based optical interferometric biosensor. Science 1997, 278, 840–843.
[4]  Dancil, K.P.S.; Greiner, D.P.; Sailor, M.J. A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface. J. Am. Chem. Soc. 1999, 121, 7925–7930.
[5]  Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062.
[6]  John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489.
[7]  Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals—Molding the Flow of Light, 2nd ed. ed.; Princeton University Press: Princeton, NJ, USA, 2008.
[8]  Bonanno, L.M.; DeLouise, L.A. Whole blood optical biosensor. Biosens. Bioelectron 2007, 23, 444–448.
[9]  Uhlir, A. Electrolytic shaping of germanium and silicon. Bell Syst. Technol. J. 1956, 35, 333–347.
[10]  Kolasinski, K.W. Etching of silicon in fluoride solutions. Surf. Sci. 2009, 603, 1904–1911.
[11]  Huimin, O.; Fauchet, P.M. Biosensing using porous silicon photonic bandgap structures. Proc. SPIE 2005, 6005, doi:10.1117/12.629961.
[12]  Vincent, G. Optical-properties of porous silicon superlattices. Appl. Phys. Lett. 1994, 64, 2367–2369.
[13]  Sailor, M.J. Porous Silicon in Practice; Wiley-VCH Verlag & Co. KGaA: Weinheim, Germany, 2012; p. 249.
[14]  Birner, A.; Wehrspohn, R.B.; Gosele, U.M.; Busch, K. Silicon-based photonic crystals. Adv. Mater 2001, 13, 377–388.
[15]  Gruning, U.; Lehmann, V.; Engelhardt, C.M. 2-Dimensional infrared photonic band-gap structure-based on porous silicon. Appl. Phys. Lett. 1995, 66, 3254–3256.
[16]  Lehmann, V. The physics of macropore formation in low doped n-type silicon. J. Electrochem. Soc. 1993, 140, 2836–2843.
[17]  Lehmann, V.; Gruning, U. The limits of macropore array fabrication. Thin Solid Films 1997, 297, 13–17.
[18]  Garin, M.; Trifonov, T.; Rodriguez, A.; Marsal, L.F.; Alcubilla, R. Optical properties of 3D macroporous silicon structures. Mater. Sci. Eng. B Adv. Funct. Solid State Mater 2008, 149, 275–280.
[19]  Trifonov, T.; Rodriguez, A.; Marsal, L.F.; Pallares, J.; Alcubilla, R. Macroporous silicon: A versatile material for 3D structure fabrication. Sens. Actuators A Phys. 2008, 141, 662–669.
[20]  Matthias, S.; Muller, F.; Gosele, U. Simple cubic three-dimensional photonic crystals based on macroporous silicon and anisotropic posttreatment. J. Appl. Phys. 2005, 98, doi:10.1063/1.1993752.
[21]  Chelnokov, A.; Wang, K.; Rowson, S.; Garoche, P.; Lourtioz, J.M. Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon. Appl. Phys. Lett. 2000, 77, 2943–2945.
[22]  Dang, Z.; Breese, M.B.H.; Recio-Sanchez, G.; Azimi, S.; Song, J.; Liang, H.; Banas, A.; Torres-Costa, V.; Jose, M.-P.R. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method. Nanoscale Res. Lett. 2012, 7, doi:10.1186/1556-276X-7-416.
[23]  Martin-Palma, R.J.; Manso, M.; Arroyo-Hernandez, M.; Torres-Costa, V.; Martinez-Duart, J.M. Nanostructured-porous-silicon-based two-dimensional photonic crystals. Appl. Phys. Lett. 2006, 89, doi:10.1063/1.2335586.
[24]  Hecht, E. Optik, 5th ed. ed.; Oldenbourg Wissenschaftsverlag GmbH: München, Germany, 2009; pp. 627–711.
[25]  Kilian, K.A.; Boecking, T.; Gooding, J.J. The importance of surface chemistry in mesoporous materials: Lessons from porous silicon biosensors. Chem. Commun. 2009, 630–640.
[26]  Buriak, J.M.; Stewart, M.P.; Geders, T.W.; Allen, M.J.; Choi, H.C.; Smith, J.; Raftery, D.; Canham, L.T. Lewis acid mediated hydrosilylation on porous silicon surfaces. J. Am. Chem. Soc. 1999, 121, 11491–11502.
[27]  Galvin, K.P. A conceptually simple derivation of the Kelvin equation. Chem. Eng. Sci. 2005, 60, 4659–4660.
[28]  Sailor, M.J.; Link, J.R. “Smart dust”: Nanostructured devices in a grain of sand. Chem. Commun. 2005, 1375–1383.
[29]  Zangooie, S.; Bjorklund, R.; Arwin, H. Vapor sensitivity of thin porous silicon layers. Sens. Actuators B Chem. 1997, 43, 168–174.
[30]  Snow, P.A.; Squire, E.K.; Russell, P.S.J.; Canham, L.T. Vapor sensing using the optical properties of porous silicon Bragg mirrors. J. Appl. Phys. 1999, 86, 1781–1784.
[31]  Mulloni, V.; Pavesi, L. Porous silicon microcavities as optical chemical sensors. Appl. Phys. Lett. 2000, 76, 2523–2525.
[32]  Baratto, C.; Faglia, G.; Sberveglieri, G.; Gaburro, Z.; Pancheri, L.; Oton, C.; Pavesi, L. Multiparametric porous silicon sensors. Sensors 2002, 2, 121–126.
[33]  De Stefano, L.; Rendina, I.; Moretti, L.; Rossi, A.M. Optical sensing of flammable substances using porous silicon microcavities. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2003, 100, 271–274.
[34]  De Stefano, L.; Moretti, L.; Rendina, I.; Rossi, A.M. Time-resolved sensing of chemical species in porous silicon optical microcavity. Sens. Actuators B Chem. 2004, 100, 168–172.
[35]  Salem, M.S.; Sailor, M.J.; Fukami, K.; Sakka, T.; Ogata, Y.H. Sensitivity of porous silicon rugate filters for chemical vapor detection. J. Appl. Phys. 2008, 103, doi:10.1063/1.2906337.
[36]  Dorvee, J.; Sailor, M.J. A low-power sensor for volatile organic compounds based on porous silicon photonic crystals. Phys. Status Solidi A Appl. Mater. Sci. 2005, 202, 1619–1623.
[37]  Schmedake, T.A.; Cunin, F.; Link, J.R.; Sailor, M.J. Standoff detection of chemicals using porous silicon “smart dust” particles. Adv. Mater 2002, 14, 1270–1272.
[38]  King, B.H.; Ruminski, A.M.; Snyder, J.L.; Sailor, M.J. Optical-fiber-mounted porous silicon photonic crystals for sensing organic vapor breakthrough in activated carbon. Adv. Mater 2007, 19, 4530–4534.
[39]  Chapron, J.; Alekseev, S.A.; Lysenko, V.; Zaitsev, V.N.; Barbier, D. Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red Rugate filters. Sens. Actuators B Chem. 2007, 120, 706–711.
[40]  Ruminski, A.M.; King, B.H.; Salonen, J.; Snyder, J.L.; Sailor, M.J. Porous silicon-based optical microsensors for volatile organic analytes: Effect of surface chemistry on stability and specificity. Adv. Funct. Mater 2010, 20, 2874–2883.
[41]  Kelly, T.L.; Gao, T.; Sailor, M.J. Carbon and carbon/silicon composites templated in rugate filters for the adsorption and detection of organic vapors. Adv. Mater 2011, 23, 1776–1781.
[42]  Seunghyun, J.; Youngdae, K.; Jihoon, K.; Jaehyun, P.; Cheolyoung, P.; Sungjin, K.; Sungdong, C.; Youngchun, K.; Honglae, S. Detection of organophosphates based on surface-modified DBR porous silicon using LED light. Mater. Lett. 2008, 62, 552–555.
[43]  King, B.H.; Gramada, A.; Link, J.R.; Sailor, M.J. Internally referenced ammonia sensor based on an electrochemically prepared porous SiO2 photonic crystal. Adv. Mater 2007, 19, 4044–4048.
[44]  Ruminski, A.M.; Barillaro, G.; Chaffin, C.; Sailor, M.J. Internally referenced remote sensors for HF and Cl2 using reactive porous silicon photonic crystals. Adv. Funct. Mater 2011, 21, 1511–1525.
[45]  Ruminski, A.M.; Moore, M.M.; Sailor, M.J. Humidity-compensating sensor for volatile organic compounds using stacked porous silicon photonic crystals. Adv. Funct. Mater 2008, 18, 3418–3426.
[46]  Jalkanen, T.; Salonen, J.; Torres-Costa, V.; Fukami, K.; Sakka, T.; Ogata, Y.H. Structural considerations on multistopband mesoporous silicon rugate filters prepared for gas sensing purposes. Opt. Express 2011, 19, 13291–13305.
[47]  King, B.H.; Wong, T.; Sailor, M.J. Detection of pure chemical vapors in a thermally cycled porous silica photonic crystal. Langmuir 2011, 27, 8576–8585.
[48]  Kelly, T.L.; Sega, A.G.; Sailor, M.J. Identification and quantification of organic vapors by time-resolved diffusion in stacked mesoporous photonic crystals. Nano Lett. 2011, 11, 3169–3173.
[49]  Anderson, M.A.; Tinsley-Bown, A.; Allcock, P.; Perkins, E.A.; Snow, P.; Hollings, M.; Smith, R.G.; Reeves, C.; Squirrell, D.J.; Nicklin, S.; et al. Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores. Phys. Status Solid A Appl. Res. 2003, 197, 528–533.
[50]  Ouyang, H.; Christophersen, M.; Viard, R.; Miller, B.L.; Fauchet, P.M. Macroporous silicon microcavities for macromolecule detection. Adv. Funct. Mater 2005, 15, 1851–1859.
[51]  DeLouise, L.A.; Kou, P.M.; Miller, B.L. Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. Insights into biosensor sensitivity. Anal. Chem. 2005, 77, 3222–3230.
[52]  Ouyang, H.; de Louise, L.A.; Miller, B.L.; Fauchet, P.M. Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors. Anal. Chem. 2007, 79, 1502–1506.
[53]  Kilian, K.A.; Boecking, T.; Gaus, K.; Gal, M.; Gooding, J.J. Peptide-modified optical filters for detecting protease activity. ACS Nano. 2007, 1, 355–361.
[54]  Pacholski, C.; Sailor, M.J. Sensing with Porous Silicon Double Layers: A General Approach for Background Suppression. Physica Status Solidi C—Current Topics in Solid State Physics. Proceeding of 14th Applied Surface Analysis Workshop, Kaiserslautern, Germany, 17– 20 September 2006; Stutzmann, M., Ed.; Wiley-VCH: Weinheim, Germany, 2007; Volume 4, pp. 2088–2092.
[55]  Orosco, M.M.; Pacholski, C.; Miskelly, G.M.; Sailor, M.J. Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity. Adv. Mater 2006, 18, 1393–1396.
[56]  Gao, L.; Mbonu, N.; Cao, L.; Gao, D. Label-free colorimetric detection of Gelatinases on nanoporous silicon photonic films. Anal. Chem. 2008, 80, 1468–1473.
[57]  Bonanno, L.M.; de Louise, L.A. Integration of a chemical-responsive hydrogel into a porous silicon photonic sensor for visual colorimetric readout. Adv. Funct. Mater 2010, 20, 573–578.
[58]  Bonanno, L.M.; de Louise, L.A. Tunable detection sensitivity of opiates in urine via a label-free porous silicon competitive inhibition immunosensor. Anal. Chem. 2010, 82, 714–722.
[59]  Bonanno, L.M.; Kwong, T.C.; de Louise, L.A. Label-free porous silicon immunosensor for broad detection of opiates in a blind clinical study and results comparison to commercial analytical chemistry techniques. Anal. Chem. 2010, 82, 9711–9718.
[60]  Hubbard, R.D.; Horner, S.R.; Miller, B.L. Highly substituted ter-cyclopentanes as receptors for lipid A. J. Am. Chem. Soc. 2001, 123, 5810–5811.
[61]  Chan, S.; Horner, S.R.; Fauchet, P.M.; Miller, B.L. Identification of gram negative bacteria using nanoscale silicon microcavities. J. Am. Chem. Soc. 2001, 123, 11797–11798.
[62]  Schwartz, M.P.; Derfus, A.M.; Alvarez, S.D.; Bhatia, S.N.; Sailor, M.J. The smart petri dish: A nanostructured photonic crystal for real-time monitoring of living cells. Langmuir 2006, 22, 7084–7090.
[63]  Alvarez, S.D.; Schwartz, M.P.; Migliori, B.; Rang, C.U.; Chao, L.; Sailor, M.J. Using a porous silicon photonic crystal for bacterial cell-based biosensing. Phys. Status Solidi A Appl. Mater. Sci. 2007, 204, 1439–1443.
[64]  Kilian, K.A.; Lai, L.M.H.; Magenau, A.; Cartland, S.; Boecking, T.; di Girolamo, N.; Gal, M.; Gaus, K.; Gooding, J.J. Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals. Nano Lett. 2009, 9, 2021–2025.
[65]  Agarwal, V.; Mora-Ramos, M.E. Optical characterization of polytype Fibonacci and Thue-Morse quasiregular dielectric structures made of porous silicon multilayers. J. Phys. D Appl. Phys. 2007, 40, 3203–3211.
[66]  Agarwal, V.; Soto-Urueta, J.A.; Becerra, D.; Mora-Ramos, M.E. Light propagation in polytype Thue-Morse structures made of porous silicon. Photonics Nanostruct. Fundam. Appl. 2005, 3, 155–161.
[67]  Moretti, L.; Rea, I.; Rotiroti, L.; Rendina, I.; Abbate, G.; Marino, A.; de Stefano, L. Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon. Opt. Express 2006, 14, 6264–6272.
[68]  Moretti, L.; Rea, I.; de Stefano, L.; Rendina, I. Periodic versus aperiodic: Enhancing the sensitivity of porous silicon based optical sensors. Appl. Phys. Lett. 2007, 90, doi:10.1063/1.2737391.
[69]  Escorcia-Garcia, J.; Gaggero-Sager, L.M.; Palestino-Escobedo, A.G.; Agarwal, V. Optical properties of Cantor nanostructures made from porous silicon: A sensing application. Photonics Nanostruct. Fundam. Appl. 2012, 10, 452–458.
[70]  Lv, X.; Mo, J.; Jiang, T.; Zhong, F.; Jia, Z.; Li, J.; Zhang, F. Novel multilayered porous silicon-based immunosensor for determining Hydroxysafflor yellow A. Appl. Surf. Sci. 2011, 257, 1906–1910.
[71]  Lv, X.; Chen, L.; Zhang, H.; Mo, J.; Zhong, F.; Lv, C.; Ma, J.; Jia, Z. Hybridization assay of insect antifreezing protein gene by novel multilayered porous silicon nucleic acid biosensor. Biosens. Bioelectron 2013, 39, 329–333.
[72]  Chow, E.; Grot, A.; Mirkarimi, L.W.; Sigalas, M.; Girolami, G. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 2004, 29, 1093–1095.
[73]  Lee, M.R.; Fauchet, P.M. Nanoscale microcavity sensor for single particle detection. Opt. Lett. 2007, 32, 3284–3286.
[74]  Zlatanovic, S.; Mirkarimi, L.W.; Sigalas, M.M.; Bynum, M.A.; Chow, E.; Robotti, K.M.; Burr, G.W.; Esener, S.; Grot, A. Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration. Sens. Actuators B Chem. 2009, 141, 13–19.
[75]  Martin-Palma, R.J.; Torres-Costa, V.; Manso, M.; Martinez-Duart, J.M. Finite-thickness photonic crystals based on nanostructured porous silicon for optical sensing. J. Nanophotonics 2009, 3, doi:10.1117/1.3079805.
[76]  Pal, S.; Guillermain, E.; Sriram, R.; Miller, B.; Fauchet, P.M. Microcavities in Photonic Crystal Waveguides for Biosensor Applications. In Frontiers in Pathogen Detection: From Nanosensors to Systems, Proc. SPIE 7553, San Francisco, CA, USA, 23 January 2010; Fauchet, P.M., Miller, B.L., Eds.; Volume 7553.
[77]  Pal, S.; Guillermain, E.; Sriram, R.; Miller, B.L.; Fauchet, P.M. Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing. Biosens. Bioelectron 2011, 26, 4024–4031.
[78]  Descrovi, E.; Frascella, F.; Sciacca, B.; Geobaldo, F.; Dominici, L.; Michelotti, F. Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications. Appl. Phys. Lett. 2007, 91, doi:10.1063/1.2824387.
[79]  Guillermain, E.; Lysenko, V.; Orobtchouk, R.; Benyattou, T.; Roux, S.; Pillonnet, A.; Perriat, P. Bragg surface wave device based on porous silicon and its application for sensing. Appl. Phys. Lett. 2007, 90, doi:10.1063/1.2747671.
[80]  Jamois, C.; Li, C.; Gerelli, E.; Chevolot, Y.; Monnier, V.; Skryshevskyi, R.; Orobtchouk, R.; Souteyrand, E.; Benyattou, T. Porous-silicon based planar photonic crystals for sensing applications. Proc. SPIE 2010, 7713, doi:10.1117/12.853878.
[81]  Jamois, C.; Li, C.; Orobtchouk, R.; Benyattou, T. Slow Bloch surface wave devices on porous silicon for sensing applications. Photonics Nanostruct. Fundam. Appl. 2010, 8, 72–77.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133