全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Microflow Cytometers with Integrated Hydrodynamic Focusing

DOI: 10.3390/s130404674

Keywords: microfluidics, flow cytometry, lab-on-a-chip, single cell analysis, blood cell differentiation, hydrodynamic focusing, ultraprecision milling

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study demonstrates the suitability of microfluidic structures for high throughput blood cell analysis. The microfluidic chips exploit fully integrated hydrodynamic focusing based on two different concepts: Two-stage cascade focusing and spin focusing (vortex) principle. The sample—A suspension of micro particles or blood cells—is injected into a sheath fluid streaming at a substantially higher flow rate, which assures positioning of the particles in the center of the flow channel. Particle velocities of a few m/s are achieved as required for high throughput blood cell analysis. The stability of hydrodynamic particle positioning was evaluated by measuring the pulse heights distributions of fluorescence signals from calibration beads. Quantitative assessment based on coefficient of variation for the fluorescence intensity distributions resulted in a value of about 3% determined for the micro-device exploiting cascade hydrodynamic focusing. For the spin focusing approach similar values were achieved for sample flow rates being 1.5 times lower. Our results indicate that the performances of both variants of hydrodynamic focusing suit for blood cell differentiation and counting. The potential of the micro flow cytometer is demonstrated by detecting immunologically labeled CD3 positive and CD4 positive T-lymphocytes in blood.

References

[1]  Weigl, B.H.; Bardell, R.; Schulte, T.; Battrell, F.; Hayenga, J. Design and rapid prototyping of thin-film laminate-based microfluidic devices. Biomed. Microdev. 2001, 4, 267–274.
[2]  Yang, Y.; Liu, Y.; Rauch, C.B.; Stevens, R.L.; Liu, R.H.; Lenigk, R.; Grodzinski, P. High sensitive PCR assay in plastic micro reactors. Lab Chip 2002, 2, 179–187.
[3]  Cheung, K.; Gawad, S.; Renaud, P. Impedance spectroscopy flow cytometry: On chip label-free cell differentiation. Cytometry Part A 2005, 65A, 124–132.
[4]  Qin, J.; Jones, R.C.; Ramakrishnan, R. Studying copy number variations using a nanofluidic platform. Nucl. Acids Res. 2008, doi:10.1093/nar/gkn518.
[5]  Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem. Soc. Rev. 2010, 39, 1153–1182.
[6]  Wlodkowic, D.; Khoshmanesh, K.; Sharpe, J.C.; Darzynkiewicz, Z.; Cooper, J.M. Apoptosis goes on a chip: Advances in the microfluidic analysis of programmed cell death. Anal. Chem. 2011, 83, 6439–6446.
[7]  Ligler, F.S.; Kim, J.S. The Microflow Cytometer; Pan Stanford Publishing: Singapore, 2010.
[8]  Shapiro, H.M. Practical Flow Cytometry, 4th ed. ed.; John Wiley and Sons: Hoboken, NJ, USA, 2005.
[9]  Piyasena, M.E.; Authanthiraraj, P.P.A.; Applegate, R.W., Jr.; Goumas, A.M.; Woods, T.A.; Lopez, G.P.; Graves, S.W. Multinode acoustic focusing for parallel flow cytometry. Anal. Chem. 2012, 84, 1831–1839.
[10]  Kummrow, A.; Theisen, J.; Frankowski, M.; Tuchscheerer, A.; Yildirim, H.; Brattke, K.; Schmidt, M.; Neukammer, J. Microfluidic structures for flow cytometric analysis of hydrodynamically focused blood cells fabricated by ultraprecision micromachining. Lab Chip 2009, 9, 972–981.
[11]  Toner, M.; Irimia, D. Blood-on-a-chip. Annu. Rev. Biomed. Eng. 2005, 7, 77–103.
[12]  Frankowski, M.; Bock, N.; Kummrow, A.; Sch?del-Ebner, S.; Schmidt, M.; Tuchscheerer, A.; Neukammer, J. A microflow cytometer exploited for the immunological differentiation of leukocytes. Cytometry Part A 2011, 79, 613–624.
[13]  Shi, W.; Guo, L.; Kasdan, H.; Tai, Y.-C. Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay. Lab Chip 2013, 13, 1257–1265.
[14]  Chen, J.; Li, J.; Sun, Y. Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 2012, 12, 1753–1767.
[15]  Akagi, J.; Kordon, M.; Zhao, H.; Matuszek, A.; Dobrucki, J.; Errington, R.; Smith, P.J.; Takeda, K.; Darzynkiewicz, Z.; Wlodkowic, D. Real-time cell viability assays using a new anthracycline derivative DRAQ7. Cytometry Part A 2013, 83, 227–234.
[16]  Cho, S.H.; Godin, J.M.; Chen, C.; Qiao, W.; Lee, H.; Lo, Y. Recent advancements on optofluidic flow cytometer. Biomicrofluidics 2010, doi:10.1063/1.3511706.
[17]  Cheung, K.C.; Di Berardino, M.; Schade-Kampmann, G.; Hebeisen, M.; Pierzchalski, A.; Bocsi, J.; Mittag, A.; Tarnok, A. Microfluidic impedance-based flow cytometry. Cytometry Part A 2010, 77A, 648–666.
[18]  Sun, T.; Morgan, H. Single-cell microfluidic impedance cytometry: A review. Microfluid. Nanofluid. 2010, 8, 423–443.
[19]  Howell, P.B. Three-Dimensional Particle Focusing. In The Microflow Cytometer; Ligler, F.S., Kim, J.S., Eds.; Pan Stanford Publishing: Singapore, 2010; pp. 117–129.
[20]  Xuan, X.; Zhu, J.; Church, C. Particle focusing in microfluidic devices. Microfluid. Nanofluid. 2010, 9, 1–16.
[21]  Lenshof, A.; Magnusson, C.; Laurell, T. Acoustofluidics 8: Applications of acoustophoresis in continuous flow microsystems. Lab Chip 2012, 12, 1210–1223.
[22]  Yang, A.H.J.; Soh, H.T. Acoustophoretic sorting of viable mammalian cells in a microfluidic device. Anal. Chem. 2012, 84, 10756–10762.
[23]  Aoki, R.; Yamada, M.; Yasuda, M.; Seki, M. In-channel focusing of flowing microparticles utilizing hydrodynamic filtration. Microfluid. Nanofluid. 2009, 6, 571–576.
[24]  Kim, J.S.; Anderson, G.P.; Erickson, J.S.; Golden, J.P.; Nasir, M.; Ligler, F.S. Multiplexed detection of bacteria and toxins using a microflow cytometer. Anal. Chem. 2009, 81, 5426–5432.
[25]  Oakey, J.; Applegate, R.W., Jr.; Arellano, E.; Di Carlo, D.; Graves, S.W.; Toner, M. Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal. Chem. 2010, 82, 3862–3867.
[26]  Wolff, A.; Perch-Nielsen, I.R.; Larsen, U.D.; Friis, P.; Goranovic, G.; Poulsen, C.R.; Kutter, J.P.; Telleman, P. Integrating advanced functionality in a microfabricated high-throuput fluorescent-activated cell sorter. Lab Chip 2003, 3, 22–27.
[27]  Nieuwenhuis, J.H.; Bastemeijer, J.; Sarro, P.M.; Vellekoop, M.J. Integrated flow-cell for novel adjustable sheath flows. Lab Chip 2003, 3, 56–61.
[28]  Simmonet, C.; Groisman, A. Two-dimensional hydrodynamic focusing in a simple microfluidic device. Appl. Phys. Lett. 2005, doi:10.1063/1.2046729.
[29]  Simmonet, C.; Groisman, A. High-throughput and high-resolution flow cytometry in molded microfluidic devices. Anal. Chem. 2006, 78, 5653–5663.
[30]  Toepke, M.W.; Brewer, S.H.; Vu, D.M.; Rector, K.D.; Morgan, J.E.; Gennis, R.B.; Kenis, P.J.A.; Dyer, R.B. Microfluidic flow-flash: Method for investigating protein dynamics. Anal. Chem. 2007, 79, 122–128.
[31]  Rosenauer, M.; Buchegger, W.; Finoulst, I.; Verhaert, P.; Vellekoop, M. Minaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes. Microfluid. Nanofluid. 2011, 10, 761–771.
[32]  Mao, X.; Waldeisen, J.R.; Huang, T.J. “Microfluidic drifting”—Implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab.Chip 2007, 7, 1260–1262.
[33]  Skommer, J.; Akagi, J.; Takeda, K.; Fujimura, Y.; Khoshmanesh, K.; Wlodkowic, D. Multiparameter lab-on-a-chip flow cytometry of the cell cycle. Biosens. Bioelectron. 2013, 42, 586–591.
[34]  Akagi, J.; Takeda, K.; Fujimura, Y.; Matuszek, A.; Khoshmanesh, K.; Wlodkowic, D. Microflow cytometry in studies of programmed tumor cell death. Sens. Actuators B Chem. 2012, doi:10.1016/j.snb.2012.10.124.
[35]  Huh, D.; Gu, W.; Kamotani, Y.; Grotberg, J.B.; Takayama, S. Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 2005, 26, R73–R98.
[36]  Bader, H.; Gordon, H.R.; Brown, O.B. Theory of coincidence counts and simple practical method of coincidence count correction of optical and resistive pulse particle counters. Rev. Sci. Instrum. 1972, 43, 1407–1412.
[37]  Kammel, M.; Kummrow, A.; Neukammer, J. Reference measurement procedures for the acurate determination on cell concentrations: present status and future developments. J. Lab Med. 2012, 36, 25–35.
[38]  Schwartz, A.; Wang, L.; Marti, G.E.; Early, E.; Gaigalas, A.; Zhang, Y.Z. Quantitating fluorescence intensity from fluorophore: The definition of MESF assignment. J. Res. Natl. Inst. Stand. Technol. 2002, 107, 83–91.
[39]  Chase, E.S.; Hoffman, R.A. Resolution of dimly fluorescent particles: A practical measure of fluorescence sensitivity. Cytometry 1998, 33, 267–279.
[40]  Otto, F.J. High-resolution analysis of nuclear DNA employing the fluorochrome DAPI. Meth. Cell. Biol. 1994, 41, 211–217.
[41]  Crowe, S.; Turnbull, S.; Oelrichs, R.; Dunne, A. Monitoring of human immunodeficiency virus infections in resource-constrained countries. Clin. Infect. Dis. 2003, 37, S25–S35.
[42]  Kummrow, A.; Frankowski, M.; Bock, N.; Werner, C.; Dziekan, T.; Neukammer, J. Quantitative assessment of cell viability based on flow cytometry and microscopy. Cytometry Part A 2013, 83A, 197–204.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133