Many methods based on spectrophotometric, fluorometric, piezoresistive, amperometric or conductive measurements have been proposed for detecting the concentration of formaldehyde in air. However, conventional formaldehyde measurement systems are bulky and expensive and require the services of highly-trained operators. Accordingly, the emergence of sophisticated technologies in recent years has prompted the development of many microscale gaseous formaldehyde detection systems. Besides their compact size, such devices have many other advantages over their macroscale counterparts, including a real-time response, a more straightforward operation, lower power consumption, and the potential for low-cost batch production. This paper commences by providing a high level overview of the formaldehyde gas sensing field and then describes some of the more significant real-time sensors presented in the literature over the past 10 years or so.
References
[1]
Korpan, Y.I.; Gonchar, M.V.; Sibirny, A.A.; Martelet, C.; El'skaya, A.V.; Gibson, T.D.; Soldatkin, A.P. Development of highly selective and stable potentiometric sensors for formaldehyde determination. Biosens. Bioelectron. 2000, 15, 77–83.
[2]
Kataky, R.; Bryce, M.R.; Goldenberg, L.; Hayes, S.; Nowak, A. A biosensor for monitoring formaldehyde using a new lipophilic tetrathiafulvalene- tetracyanoquinodimethane salt and a polyurethane membrane. Talanta 2002, 56, 451–458.
[3]
Kim, W.J.; Terada, N.; Nomura, T.; Takahashi, R.; Lee, S.D.; Park, J.H.; Konno, A. Effect on formaldehyde on the expression of adhesion molecule in nasal microvascular endothelial cells: The role of formaldehyde in the pathogenesis of sick building syndrome. Clin. Exp. Allergy 2002, 32, 287–295.
[4]
Hemple, A.J.; Kjaergaard, K.S.; Molhave, L.; Hundnell, H.K. Sensory eye irritation in humans exposed to mixture of volatile organic compounds. Arch. Environ. Health 1999, 54, 416–424.
[5]
Kawamura, K.; Kerman, K.; Fujihara, M.; Nagatani, N.; Hashiba, T.; Tamiya, E. Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sens. Actuators B Chem. 2005, 105, 495–501.
[6]
Que, Z.; Furuno, T.; Katoh, S.; Nishino, Y. Evaluation of three test methods in determination of formaldehyde emission from particleboard bonded with different mole ratio in the urea-formaldehyde resin. Build. Environ. 2007, 42, 1242–1249.
[7]
An, J.Y.; Kim, S.; Kim, H.J.; Seo, J. Emission behavior of formaldehyde and TVOC from engineered flooring in under heating and air circulation systems. Build. Environ. 2010, 45, 1826–1833.
[8]
Liu, J.; Wang, W.; Li, S.; Liu, M.; He, S. Advances in SAW gas sensors based on the condensate-adsorption effect. Sensors 2011, 11, 11871–11884.
[9]
Salem, M.Z.M.; B?hm, M.; Beránková, J.; Srba, J. Effect of some manufacturing variables on formaldehyde release from particleboard: Relationship between different test methods. Build. Environ. 2011, 46, 1946–1953.
[10]
Salem, M.Z.M.; B?hm, M.; Srba, J.; Beránková, J. Evaluation of formaldehyde emission from different types of wood-based panels and flooring materials using different standard test methods. Build. Environ. 2012, 49, 86–96.
[11]
He, Z.; Zhang, Y.; Wei, W. Formaldehyde and VOC emissions at different manufacturing stages of wood-based panels. Build. Environ. 2012, 47, 197–204.
[12]
Lu, N.; Pei, J.; Zhao, Y.; Qi, R.; Liu, J. Performance of a biological degradation method for indoor formaldehyde removal. Build. Environ. 2012, 57, 253–258.
[13]
Wang, X.; Si, Y.; Wang, J.; Ding, B.; Yu, J.; Al-Deyab, S.S. A facile and highly sensitive colorimetric sensor for the detection of formaldehyde based on electro-spinning/netting nano-fiber/nets. Sens. Actuators B Chem. 2012, 163, 186–193.
[14]
Air Quality Guidelines, 2nd ed. ed.; WHO Regional Office for Europe: Copenhagen, Denmark, 2001.
[15]
Occupational Safety and Health Guideline for Formaldehyde Potential Human Carcinogen; U.S. Department of Health and Human Services: Washington, DC, USA, 1998.
[16]
Mohimann, G.R. Formaldehyde detection in air by laser induced fluorescence. Appl. Spectr. 1985, 39, 98–101.
[17]
Dumas, T. Determination of formaldehyde in air by gas chromatography. J. Chromatogr. 1982, 247, 289–295.
[18]
Mann, B.; Grajeski, M.L. New chemiluminescent derivatizing agent for the analysis of aldehyde and ketones by high-performance liquid chromatography with peroxioxalate chemiluminescence. J. Chromatogr. 1987, 386, 149–158.
[19]
Lorrain, J.M.; Fortune, C.R.; Dellinger, B. Sampling and ion chromatographic determination of formaldehyde and acetaldehyde. Anal. Chem. 1981, 53, 1302–1305.
[20]
Septon, J.C.; Ku, J.C. Workplace air sampling and polarographic determination of formaldehyde. Am. Ind. Hyg. Assoc. J. 1982, 43, 845–852.
[21]
Hopkins, J.R.; Still, T.; Al-Haider, S.; Fisher, I.R.; Lewis, A.C.; Seakins, P.W. A simplified apparatus for ambient formaldehyde detection via GC-pHID. Atoms. Environ. 2003, 37, 2557–2565.
Vianello, F.; Stefani, A.; Di Paolo, M.L.; Rigo, A.; Lui, A.; Margesin, B.; Zen, M.; Scarpa, M.; Soncini, G. Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET. Sens. Actuators B Chem. 1996, 37, 49–54.
[24]
Sritharathikhun, P.; Oshima, M.; Motomizu, S. On-line collection/concentration of trace amounts of formaldehyde in air with chromatomembrane cell and its sensitive determination by flow injection technique coupled with spectrophotometric and fluorometric detection. Talanta 2005, 67, 1014–1022.
[25]
Vianello, F.; Boscolo-Chio, R.; Signorini, S.; Rigo, A. On-line detection of atmospheric formaldehyde by a conductometric biosensor. Biosens. Bioelectron. 2007, 22, 920–925.
[26]
Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors definitions and classification. Pure Appl. Chem. 1991, 63, 1247–1250.
[27]
Suzuki, Y.; Nakano, N.; Suzuki, K. Portable sick house syndrome gas monitoring system based on novel colorimetric reagents for the highly selective and sensitive detection of formaldehyde. Environ. Sci. Technol. 2003, 37, 5695–5700.
[28]
Descamps, M.N.; Bordy, T.; Hue, J.; Mariano, S.; Nonglaton, G.; Schultz, E.; Tan-Thi, T.H.; Vignoud-Despond, S. Real-time detection of formaldehyde by a sensor. Sens. Actuators B Chem. 2012, 170, 104–108.
[29]
Seo, H.; Jung, S.; Jeon, S. Detection of formaldehyde vapor using mercaptophenol-coated piezoresistive cantilevers. Sens. Actuators B Chem. 2007, 126, 522–526.
[30]
Deng, B.; Liu, Y.; Yin, H.; Ning, X.; Lu, H.; Ye, L.; Xu, Q. Determination of ultra-trace formaldehyde in air using ammonium sulfate as derivatization reagent and capillary electrophoresis coupled with on-line electrochemiluminescence detection. Talanta 2012, 91, 128–133.
[31]
Achmann, S.; Hermann, M.; Hilbrig, F.; Jér?me, V.; H?mmerle, M.; Freitag, R.; Moos, R. Direct detection of formaldehyde in air by a novel NAD+- and glutathione-independent formaldehyde dehydrogenase-based biosensor. Talanta 2008, 75, 786–791.
[32]
Dong, S.; Dasgupta, P.K. Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde. Environ. Sci. Technol. 1986, 20, 637–640.
[33]
Peng, L.; Zhao, Q.; Wang, D.; Zhai, J.; Wang, P.; Pang, S.; Xie, T. Ultraviolet-assisted gas sensing: A potential formaldehyde detection approach at room temperature based on zinc oxide nanorads. Sens. Actuators B Chem. 2009, 136, 80–85.
[34]
Bai, Z.; Xie, C.; Hu, M.; Zhang, S. Formaldehyde sensor based on Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field. Physica E 2008, 41, 235–239.
[35]
Chu, X.; Chen, T.; Zhang, W.; Zheng, B.; Shui, H. Investigation on formaldehyde gas sensor with ZnO thick film prepared through microwave heating method. Sens. Actuators B Chem. 2009, 142, 49–54.
[36]
Han, N.; Wu, X.; Zhang, D.; Shen, G.; Liu, H.; Chen, Y. CdO activated Sn-doped ZnO for highly sensitive, selective and stable formaldehyde sensor. Sens. Actuators B Chem. 2011, 152, 324–329.
[37]
Zhang, L.; Zhao, J.; Lu, H.; Gong, L.; Li, L.; Zheng, J.; Li, H.; Zhu, Z. High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octahedrons synthesized by homogeneous precipitation method. Sens. Actuators B Chem. 2011, 160, 364–370.
[38]
Zhang, L.; Zhao, J.; Zheng, J.; Li, L.; Zhu, Z. Shuttle-like ZnO nano/microrods: Facile synthesis, optical characterization and high formaldehyde sensing properties. Appl. Surf. Sci. 2011, 258, 711–718.
[39]
Deng, L.; Ding, X.; Zeng, D.; Tian, S.; Li, H.; Xie, C. Visible-light activate mesoporous WO3 sensors with enhanced formaldehyde-sensing property at room temperature. Sens. Actuators B Chem. 2012, 163, 260–266.
[40]
Xie, C.; Xiao, L.; Hu, M.; Bai, Z.; Xia, X.; Zeng, D. Fabrication and formaldehyde gas-sensing property of ZnO-MnO2 coplanar gas sensor arrays. Sens. Actuators B Chem. 2010, 145, 457–463.
[41]
Lee, C.Y.; Chiang, C.M.; Wang, Y.H.; Ma, R.H. A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sens. Actuators B Chem. 2007, 122, 503–510.
[42]
Dirksen, J.A.; Duval, K.; Ring, T.A. NiO thin-film formaldehyde gas sensors. Sens. Actuators B Chem. 2001, 80, 106–115.
[43]
Hotovy, I.; Rehacek, V.; Siciliano, P.; Capone, S.; Spiess, L. Sensing characteristics of NiO thin films as NO2 gas sensor. Thin Solid Film. 2002, 418, 9–15.
Lv, P.; Tang, Z.A.; Yu, J.; Zhang, F.T.; Wei, G.F.; Huang, Z.X.; Hu, Y. Study on a micro-gas sensor with SnO2-NiO sensitive film for indoor formaldehyde detection. Sens. Actuators B Chem. 2008, 132, 74–80.
[46]
Castro-Hurtado, I.; Herrán, J.; Mandayo, G.G.; Casta?o, E. Studies of influence of structural properties and thickness of NiO thin films on formaldehyde detection. Thin Solid Film. 2011, 520, 947–952.
[47]
Castro-Hurtado, I.; Herrán, J.; Mandayo, G.G.; Casta?o, E. SnO2-nanowires grown by catalytic oxidation of tin sputtered thin films for formaldehyde detection. Thin Solid Film. 2011, 520, 4792–4796.
[48]
Xie, H.; Sheng, C.; Chen, X.; Wang, X.; Li, Z.; Zhou, J. Multi-wall carbon nanotube gas sensors modified with amino-group to detect low concentration of formaldehyde. Sens. Actuators B Chem. 2012, 168, 34–38.