The International Civil Aviation Organization (ICAO) has decided to adopt Communications, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) as the 21st century standard for navigation. Accordingly, ICAO members have provided an impetus to develop related technology and build sufficient infrastructure. For aviation surveillance with CNS/ATM, Ground-Based Augmentation System (GBAS), Automatic Dependent Surveillance-Broadcast (ADS-B), multilateration (MLAT) and wide-area multilateration (WAM) systems are being established. These sensors can track aircraft positions more accurately than existing radar and can compensate for the blind spots in aircraft surveillance. In this paper, we applied a novel sensor fusion method with Interacting Multiple Model (IMM) filter to GBAS, ADS-B, MLAT, and WAM data in order to improve the reliability of the aircraft position. Results of performance analysis show that the position accuracy is improved by the proposed sensor fusion method with the IMM filter.
References
[1]
CNS/ATM Ground Station and Service Status Reports. SUR.ET1.ST05.2000-STD-16-01; European Air Traffic Management: Brussels, Belgium, 2009.
[2]
Dautermann, T.; Felux, M.; Grosch, A. Approach service type D evaluation of the DLR GBAS testbed. GPS Solut. 2012, 16, 375–387.
[3]
Minimum Aviation System Performance Standards (MASPS) for Automatic Dependent Surveillance-Broadcast (ADS-B); Radio Technical Commission for Aeronautics: Washington, DC, USA, 2002.
Generic Safety Assessment for ATC Surveillance Using Wide Area Multilateration; Eurocontrol: Brussels, Belgium, 2008.
[6]
Pourvoyeur, K.; Mathias, A.; Heidger, R. Investigation of Measurement Characteristics of MLAT/WAM and ADS-B. Proceedings of the Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV), Capri, Italy, 12–14 September 2011; pp. 203–206.
[7]
Baud, O.; Gomord, P.; Honore, N.; Ostorero, L.; Taupin, O.; Tubery, P. Multi Sensor Data Fusion Architectures for Air Traffic Control Applications. In Sensor and Data Fusion; I-Tech: Vienna, Austria, 2009; pp. 103–122.
[8]
Wang, H.; Kirubarajan, T.; Bar-Shalom, Y. Precision large scale air traffic surveillance using IMM/assignment estimators. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 255–266.
[9]
Durrant, W. Multisensor Data Fusion. Ph.D. Thesis, The University of Sydney, Sydney, Australia, 2001.
[10]
Yeddanapudi, M.; Bar-Shalom, Y.; Pattipati, K. IMM Estimation for Multitarget-Multisensor Air Traffic Surveillance. Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, 13–15 December 1995; pp. 2778–2783.
[11]
Rong, L.; Wang, W.-C.; Logan, M.; Donohue, T. Multiplatform multisensor fusion with adaptive-rate data communication. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 274–281.
[12]
Baud, O.; Honore, N.; Taupin, O. Radar/ADS-B Data Fusion Architecture for Experimentation Purpose. Proceedings of the 9th International Conference on Information Fusion, Florence, Italy, 10–13 July 2006; pp. 1–6.
[13]
Ning, X.; Cassell, R.; Evers, C.; Hauswald, S.; Langhans, W. Performance Assessment of Multilateration Systems-A Solution to Nextgen Surveillance. Proceedings of the Integrated Communications Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 11–13 May 2010.
[14]
Mantilla-G, I.A.; Balbastre-T, J.V.; de los Reyes, E.; Leonardi, M.; Galati, G. Improvement of Multilateration (MLAT) Accuracy and Convergence for Airport Surveillance. Proceedings of the Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV), Capri, Italy, 12–14 September 2011; pp. 185–190.
[15]
Galati, G.; Leonardi, M.; Magaro, P.; Paciucci, V. Wide Area Surveillance Using SSR Mode S Multilateration: Advantages and Limitations. Proceedings of the European Radar Conference, Paris, France, 6–7 October 2005; pp. 225–229.
[16]
Rodger, J.A. Toward reducing failure risk in an integrated vehicle health maintenance system: A fuzzy multi-sensor data fusion Kalman filter approach for IVHMS. Exp. Syst. Appl. 2012, 39, 9821–9836.
[17]
Zhang, J.; Liu, W.; Zhu, Y. Study of ADS-B data evaluation. Chin. J. Aeronaut. 2011, 24, 461–466.
[18]
Rush, J. Current issues in the use of the global positioning system aboard satellites. ACM Astronaut. 2000, 47, 377–387.
[19]
Leonardi, M.; Mathias, A.; Galati, G. Two efficient localization algorithms for multilateration. Int. J. Microw. Wirel. Technol. 2009, 1, 223–229.
[20]
Shen, G.; Zetik, R.; Thom?, R. Performance Comparison of TOA and TDOA Based Location Estimation Algorithms in LOS Environment. Proceedings of the 5th Workshop on Positioning, Navigation and Communication, Hannover, Germany, 27 March 2008; pp. 71–78.
[21]
Sung, W.J.; Choi, S.O.; You, K.H. TDoA Based UGV Localization Using Adaptive Kalman Filter Algorithm. Int. J. Contr. Autom. 2009, 2, 1–10.
[22]
Kim, C.H.; Han, J.H.; Kang, J.Y. Air surveillance using mode-S multilateration. Korean Soc. Aeronaut. Sci. Flight Operat. 2010, 18, 9–20.
[23]
Abbud, J.M.; Miguel, G.; Besada, J. Correction of Systematic Errors in Wide Area Multilateration. Proceedings of the 2011 Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV), Capri, Italy, 12–14 September 2011; pp. 173–178.
[24]
Moose, R.L. An adaptive state estimation solution to the maneuvering target problem. IEEE Trans. Autom. Contr. 1998, 10, 359–362.
[25]
Pitre, R.R.; Jilkov, V.P.; Li, X.R. A comparative study of multiple-model algorithms for maneuvering target tracking. Proc. SPIE 2005, doi:10.1117/12.609681.
[26]
Blom, H.A.P.; Bar-Shalom, Y. The interacting multiple model algorithm for systems with markovian switching coefficients. IEEE Trans. Autom. Contr. 1988, 33, 780–783.
[27]
Li, X.R.; Bar-Shalom, Y. Design of interacting multiple model algorithm for air traffic control tracking. IEEE Trans. Contr. Syst. Technol. 1993, 1, 186–194.
[28]
Gao, Y.; Krakiwsky, E.J.; Abousalem, M.A.; McLellan, J.F. Comparison and analysis of centralized, decentralized, and federated filters. J. Inst. Navig. 1993, 40, 69–86.
[29]
Lee, T.G. Centralized kalman filter with adaptive measurement fusion: Its application to a GPS/SDINS integration system with an additional sensor. Int. J. Contr. Autom. Syst. 2003, 4, 444–452.