A technique for rapid detection of pathogenic microorganisms is essential for the diagnosis of associated infections and for food safety analysis. Aeromonas hydrophila is one such food contaminant. Several methods for rapid detection of this pathogen have been developed; these include multiplex polymerase chain reaction assays and the colony overlay procedure for peptidases. However, these conventional methods can only be used to detect the microorganisms at high accuracy after symptomatic onset of the disease. Therefore, in the future, simple pre-screening methods may be useful for preventing food poisoning and disease. In this paper, we present a novel system for the rapid detection of the microorganism A. hydrophila in cultured media (in <2 h), with the use of an electronic nose (FF-2A). With this electronic nose, we detected the changes of volatile patterns produced by A. hydrophila after 30 min culture. Our calculations revealed that the increased volatiles were similar to the odours of organic acids and esters. In future, distinctive volatile production patterns of microorganisms identified with the electronic nose may have the potential in microorganism detection.
References
[1]
Rock, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem Rev. 2008, 108, 705–725.
[2]
Rakow, N.A.; Susllck, K.S. A colorimetric sensor array for odour visualization. Nature 2000, 406, 710–713.
[3]
Susllck, K.S.; Rakow, N.A.; Sen, A. Colorimetric sensor arrays for molecular recognition. Tetrahedron 2004, 60, 11133–11138.
[4]
Shirasu, M.; Fujioka, K.; Kakishima, S.; Tomizawa, Y.; Nagai, S.; Murata, J.; Manome, Y.; Touhara, K. Chemical identity of a rotting animal-like odor emitted from the inflorescence of the Titan Arum (Amorphophallus titanum). Biosci. Biotechnol. Biochem. 2010, 74, 2550–2554.
[5]
Fujioka, K.; Shirasu, M.; Manome, Y.; Ito, N.; Kakishima, S.; Minami, T.; Tominaga, T.; Shimozono, F.; Iwamoto, T.; Ikeda, K.; Yamamoto, K.; Murata, J.; Tomizawa, Y. Objective display and discrimination of floral odors from amorphophallus titanum, bloomed on different dates and at different locations, using an electronic nose. Sensors 2012, 12, 2152–2161.
[6]
Pandey, S.K.; Kim, K.H. Human body-odor components and their determination. Trac-Trends Anal. Chem. 2011, 30, 784–796.
[7]
Holmberg, M.; Gustafsson, F.; Hornsten, E.G.; Winquist, F.; Nilsson, L.E.; Ljung, L.; Lundstorm, I. Bacteria classification based on feature extraction from sensor data. Biotechnol. Tech. 1998, 12, 319–324.
[8]
Gardner, J.W.; Craven, M.; Dow, C.; Hines, E.L. The prediction of bacteria type and culture growth phase by an electronic nose with a multi-layer perception network. Meas. Sci. Technol. 1998, 9, 120–127.
[9]
Gibson, T.D.; Prosser, O.; Hulbert, J.N.; Marshall, R.W.; Corcoran, P.; Lowery, P.; Ruck-Keene, E.A.; Heron, S. Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose. Sens. Actuators B Chem. 1997, 44, 413–422.
[10]
Casalinuovo, I.A.; Pierro, D.; Bruno, E.; Francesco, P.; Coletta, M. Experimental use of a new surface acoustic wave sensor for the rapid identification of bacteria and yeasts. Lett. Appl. Microbiol. 2006, 42, 24–29.
[11]
Fujioka, K.; Arakawa, E.; Kita, J.A.Y.; Okuda, T.; Manome, Y.; Yamamoto, K. Combination of real-value smell and metaphor exfpression aids yeast detection. PLoS One 2009, 4, e7939.
[12]
Mohamed, E.I.; Linder, R.; Periello, G.; di Daniele, N.; Poppl, S.J.; De Lorenzo, A. Predicting Type 2 diabetes using an electronic nose-based artificial neural network analysis. Diabetes Nutr. Metab. 2002, 15, 215–221.
[13]
Pavlou, A.K.; Magan, N.; Jones, J.M.; Brown, J.; Klatser, P.; Turner, A.P.F. Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens. Bioelectron. 2004, 20, 538–544.
[14]
Thaler, E.R.; Hanson, C.W. Use of an electronic nose to diagnose bacterial sinusitis. Am. J. Rhinol. 2006, 20, 170–172.
[15]
Turner, A.P.; Magan, N. Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2004, 2, 161–166.
[16]
Gutierrez-Mendez, N.; Vallejo-Cordoba, B.; Gonzalez-Cordova, A.F.; Nevarez-Moorillon, G.V.; Rivera-Chavira, B. Evaluation of aroma generation of Lactococcus lactis with an electronic nose and sensory analysis. J. Dairy Sci. 2008, 91, 49–57.
[17]
Keshri, G.; Voysey, P.; Magan, N. Early detection of spoilage moulds in bread using volatile production patterns and quantitative enzyme assays. J. Appl. Microbiol. 2002, 92, 165–172.
[18]
Mamat, M.; Samad, S.A.; Hannan, M.A. An electronic nose for reliable measurement and correct classification of beverages. Sensors 2011, 11, 6435–6453.
[19]
Peris, M.; Escuder-Gilabert, L. A 21st century technique for food control: Electronic noses. Anal. Chim. Acta 2009, 638, 1–15.
[20]
Baldwin, E.A.; Bai, J.; Plotto, A.; Dea, S. Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors 2011, 11, 4744–4766.
[21]
Martin-Carnahan, A.; Joseph, S.W.; Family, I. Aeromonadaceae Colwell, MacDonell and De Ley 1986. In Bergey's Manual of Systematic Bacteriology, 2nd ed.; Brenner, D., Krieg, N.R., Staley, J.T., Eds.; Springer: Berlin, Germany, 2005; Volume 2, p. 556.
[22]
Von Graevenitz, A. The role of Aeromonas in Diarrhea: A review. Infection 2007, 35, 59–64.
[23]
Holmes, P.; Niccolls, L.M.; Sartory, D.P. The ecology of mesophilic Aeromonas in the aquatic environment. In The Genus Aeromonas; Austin, B., Altwegg, M., Golling, P.J., Joseph, S.W., Eds.; John Wiley & Sons Ltd.: West Sussex, UK, 1996; pp. 127–150.
[24]
Borchardt, M.A.; Stemper, M.E.; Standridge, J.H. Aeromonas isolates from human diarrheic stool and groundwater compared by pulsed-field gel electrophoresis. Emerg. Infect. Dis. 2003, 9, 224–228.
[25]
Martin-Carnahan, A.; Joseph, S.W.; Genus, I. Aeromonas Stanier 1943. In Bergey's Manual of Systematic Bacteriology, 2nd ed.; Brenner, D., Krieg, N.R., Staley, J.T., Eds.; Springer: Berlin, Germany, 2005; Volume 2, pp. 557–578.
[26]
Nomura, T. Maturation pathway of hemolysin of Aeromonas sobria and the mechanism of action of the hemolysin. Yakugaku Zasshi 2001, 121, 481–485.
[27]
Erova, T.E.; Sha, J.; Horneman, A.J.; Borchardt, M.A.; Khajanchi, B.K.; Fadl, A.A.; Chopra, A.K. Identification of a new hemolysin from diarrheal isolate SSU of Aeromonas hydrophila. FEMS Microbiol. Lett. 2007, 275, 301–311.
[28]
Guimaraes, M.S.; Andrade, J.R.; Freitas-Almeida, A.C.; Ferreira, M.C. Aeromonas hydrophila vacuolating activity in the Caco-2 human enterocyte cell line as a putative virulence factor. FEMS Microbiol. Lett. 2002, 207, 127–131.
[29]
Brink, A.J.; Giannakopoulos, E.; VilJoen, H.G. Fishtank water as a source of a rare case of Aeromonas hydrophila septicaemia. S. Afr. Med. J. 1998, 88, 1011–1012.
Sakata, K.; Ikeda, Y.; Mori, T.; Okamoto, K.; Ideguchi, K.; Nakagawa, K.; Yasumitsu, T. A severe case of aeromonas hydrophila infection after surgery for gastric cancer. Jpn. J. Gastroenterol. Surg. 2003, 36, 470–475.
[32]
Sen, K.; Rodgers, M. Distribution of six virulence factors in Aeromonas species isolated from US drinking water utilities: A PCR identification. J. Appl. Microbiol. 2004, 97, 1077–1086.
[33]
Nam, I.; Joh, K. Rapid detection of virulence factors of Aeromonas isolated from trout farm by hexaplex-PCR. J. Microbiol. 2007, 45, 297–304.
[34]
Richards, G.P.; Watoson, M.A. A simple fluorogenic method to detect Vibrio cholerae and Aeromonas hydrophila in well water for areas impacted by catastrophic disasters. Am. J. Trop. Med. Hyg. 2006, 75, 516–521.
[35]
Lee, S.; Kim, J.; Shin, S.G.; Hwang, S. Biokinetic parameters and behavior of Aeromonas hydrophila during anaerobic growth. Biothechnol. Lett. 2008, 30, 1011–1016.
[36]
Abbot, S.L.; Cheung, W.K.W.; Janda, J.M. The Genus Aeromonas: Biochemical characteristics, atypical reactions, and phenotypic identification schemes. J. Clin. Microbiol. 2003, 41, 2348–2357.
[37]
Kita, J.; Aoyama, Y.; Kinoshita, M.; Akamaru, H.; Okada, M. Role of “FF-2A” electronic nose and its applications—Focusing on odor monitoring. Shimadzu Rev. 2007, 64, 63–73.
[38]
Aoyama, Y. An electronic nose and application to smell evaluation of food and dink by it. J. Integr. Study Dietary Habit. 2006, 17, 266–270.
[39]
Uchida, N.; Takahashi, Y.K.; Tanifuji, M.; Mori, K. Odor maps in the mammalian Olfactory bulb: Domain organization and odorant structural features. Nat. Neurosci. 2000, 3, 1035–1043.
[40]
Kiritsakis, A.K. Flavor components of olive oil—A review. J. Am. Oil Chem. Soc. 1998, 75, 673–681.