全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Toward One Giga Frames per Second — Evolution of in Situ Storage Image Sensors

DOI: 10.3390/s130404640

Keywords: imaging device, high-speed, image sensor, BSI, ISIS, ISAS

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ISIS is an ultra-fast image sensor with in-pixel storage. The evolution of the ISIS in the past and in the near future is reviewed and forecasted. To cover the storage area with a light shield, the conventional frontside illuminated ISIS has a limited fill factor. To achieve higher sensitivity, a BSI ISIS was developed. To avoid direct intrusion of light and migration of signal electrons to the storage area on the frontside, a cross-sectional sensor structure with thick pnpn layers was developed, and named “Tetratified structure”. By folding and looping in-pixel storage CCDs, an image signal accumulation sensor, ISAS, is proposed. The ISAS has a new function, the in-pixel signal accumulation, in addition to the ultra-high-speed imaging. To achieve much higher frame rate, a multi-collection-gate (MCG) BSI image sensor architecture is proposed. The photoreceptive area forms a honeycomb-like shape. Performance of a hexagonal CCD-type MCG BSI sensor is examined by simulations. The highest frame rate is theoretically more than 1Gfps. For the near future, a stacked hybrid CCD/CMOS MCG image sensor seems most promising. The associated problems are discussed. A fine TSV process is the key technology to realize the structure.

References

[1]  Single-Photon Imaging, 1st ed.; Seitz, P., Theuwissen, A.J.P., Eds.; Springer: New York, NY, USA, 2011.
[2]  Versluis, M.; Schmitz, B.; von der Heydt, A.; Lohse, D. How snapping shrimp snap: Through cavitating bubbles. Science 2000, 289, 2114–2117.
[3]  Etoh, T. A high-speed video camera operating at 4,500 fps. ITE J. 1992, 46, 543–545. (in Japanese).
[4]  Li, D.-U.; Arlt, J.; Richardson, J.; Walker, R.; Buts, A.; Atoppa, D.; Charbon, E.; Henderson, R. Real-Time fluorescence lifetime imaging system with 3 32 × 32 0.13 μm CMOS low dark-count single-photon avalanshe diode array. Opt. Express 2010, 18, 10257–10269.
[5]  Maruyama, Y.; Charbon, E. A time-gated 128 × 128 CMOS SPAD array for on-chip detection. Proceedings of International Image Sensor Workshop, Hokkaido, Japan, 8–11 June 2011.
[6]  Etoh, T.G.; Poggemann, D.; Ruckelshausen, A.; Theuwissen, A.; Kreider, G.; Folkerts, O.-H.; Mutoh, H.; Kondo, Y.; Maruno, H.; Takubo, K.; et al. A CCD image sensor of 1 Mframes/s for continuous image capturing of 103 frames. Proceedings of International Solid-State Circuits Conference, San Francisco, CA, USA, 3–7 February 2002. Digest of Technical Papers; pp. 46–47.
[7]  Etoh, T.G.; Nguyen, D.H.; Dao, V.T.S.; Vo Le, C.; Tanaka, M.; Takehara, K.; Okinaka, T.; van Kuijk, H.; Klaasens, W.; Bosiers, J.; et al. A 16 Mfps 165 kpixel backside-illuminated CCD. Proceedings of International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011. Digest of Technical Papers; pp. 406–407.
[8]  Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. 300,000-pixel ultrahigh-speed high-sensitivity CCD and a single-chip color camera mounting this CCD. Broadcast Technol. 2006, 28, 2–9.
[9]  Arai, T.; Yonai, J.; Hayashida, T.; Ohtake, H.; van Kuijk, H.; Etoh, T.G. Back-Side-Illuminated image sensor with burst capturing speed of 5.2 Tpixels per second. Proceedings of Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, Burlingame, CA, USA, 3 February 2013.
[10]  Etoh, T.G.; Takehara, K. Needs, requirements, and new proposals for ultra-high-speed video cameras in Japan. Proceedings of SPIE 21st International Congress on High-Speed Photography and Photonics, Taejon, Korea, 29 August 1994; pp. 231–242.
[11]  Takano, Y.; Etoh, T.G.; Takehara, K. Users’ requirements and specification on high-speed video cameras. J. Visual. Soc. Jpn. 2003, 23, 11–14. (in Japanese).
[12]  Etoh, T.G.; Vo Le, C.; Hashishin, Y.; Otsuka, N.; Takehara, K.; Ohtake, H.; Hayashida, T.; Maruyama, H. Evolution of ultra-high-speed CCD imagers. Plasma Fusion Res. 2007, 2, 1–8.
[13]  Dao, V.T.S.; Etoh, T.G.; Dung, N.H.; Vo Le, C.; Takehara, K.; Akino, T.; Nishi, K.; Aoki, H.; Nakai, J. Toward 100 Mega-frames per second: Design of an ultimate ultra-high-speed image sensor. Sensors 2010, 10, 16–35.
[14]  Etoh, T.G.; Dao, V.T.S.; Akino, T.K.; Akino, T.; Nishi, K.; Kureta, M.; Arai, M. Ultra-High-Speed image signal accumulation sensor. Sensors 2010, 10, 4100–4113.
[15]  Yamada, T.; Dao, V.T.S.; Etoh, T. An ultra-high-speed image sensor operating at more than 100 Mfps—A new architecture toward an ultimate high-speed imaging. ITE Tech. Rep. 2012, 36, 5–8. (in Japanese).
[16]  Vo Le, C.; Etoh, T.G.; Nguyen, H.D.; Dao, V.T.S.; Soya, H.; Lesser, M.; Ouellette, D.; van Kuijk, H.; Bosiers, J.; Ingram, G. A backside-illuminated image sensor with 200,000 pixels operating at 250, 000 frames per second. IEEE Trans.Electron Devices. 2009, 56, 2556–2652.
[17]  Mitsunaga, M.; Uesugi, N.; Sasaki, H.; Karaki, K. Holographic motion picture by Eu3+:Y2SiO5. Opt. Lett. 1994, 19, 752–754.
[18]  Shiraga, H.; Fujioka, S.; Jaanimagi, P.A.; Stoeckl, C.; Stephens, R.B.; Nagatomo, H.; Tanaka, K.A.; Kodama, R.; Azechi, H. Multi-imaging x-ray streak camera for ultrahigh-speed two dimensional x-ray imaging of imploded core plasmas. Rev. Sci. Instr. 2004, 75, 3921–3925.
[19]  Awatsuji, Y.; Kubota, T. Moving picture of three-dimensional image of femtosecond light pulse propagating in three-dimensional space. AIP Conf. Proc. 2007, 949, 218–225.
[20]  Cussans, D.; Goldstein, J.; Payton, O.; Stuttard, T.; Mandry, S.; Velthuis, J.J.; Stefanov, K.D.; Zhang, Z.; Banda, Y.; Cheplakov, A.; et al. Results from the ISIS 1 detector. Nucl. Instrum. Meth. Phys. Res. A 2009, 604, 393–396.
[21]  Crooks, J.; Marsh, B.; Turchetta, R.; Taylor, K.; Chan, W.; Lahav, A.; Fenigstein, A. Kirana: A solid-state megapixel uCMOS image sensor for ultrahigh speed imaging. Proceedings of Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, Burlingame, CA, USA, 3 February 2013.
[22]  Tochigi, Y.; Hanzawa, K.; Kato, Y.; Kuroda, R.; Mutoh, H.; Hirose, R.; Tominaga, H.; Takubo, K.; Kondo, Y.; Sugawa, S. A global-shutter CMOS image sensor with readout speed of 1 Tpixel/s burst and 780 Mpixel/s continuous. Proceedings of International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012. Digest of Technical Papers; pp. 382–383.
[23]  Tochigi, Y.; Hanzawa, K.; Kato, Y.; Kuroda, R.; Mutoh, H.; Hirose, R.; Tominaga, H.; Takubo, K.; Kondo, Y.; Sugawa, S. A global-shutter CMOS image sensor with readout speed of 1 Tpixel/s burst and 780 Mpixel/s continuous. IEEE J.Solid-State Circuits 2013, 48, 329–338.
[24]  Kosonocky, W.F.; Guand, Y.; Chao, Y.; Kabra, R.K.; Xie, L.; Lawrence, J.L.; Mastrocolla, V.; Shallcross, F.V.; Patel, V. 360×360-element very-high-frame-rate burst image sensor. Proceedings of International Solid-State Circuits Conference, San Francisco, CA, USA, 8–10 February 1996. Digest of Technical Papers; pp. 182–183.
[25]  Lazuvsky, L.; Gismas, G.; Allan, G.; Given, D. CCD sensor and camera for 100 Mfps burst frame rate image capture. Proceedings of Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications II, Orlando, FL, USA, 28 March 2005; pp. 184–190.
[26]  Etoh, T.G.; Dao, V.T.S.; Nguyen, H.D.; Fife, K.; Kureta, M.; Segawa, M.; Arai, M.; Shinohara, T. Progress of ultra-high-speed image sensors with in situ CCD storage. Proceedings of International Image Sensor Workshop, Hokkaido, Japan, 8–11 June 2011.
[27]  Ballin, J.A.; Crooks, J.P.; Dauncey, P.D.; Magnan, A.-M.; Mikami, Y.; Noy, M.; Rajovic, V.; Stanizki, M.M.; Stefanov, K.D.; Turchetta, R.; et al. Monolithic active pixel sensors (MAPS) in a quadruple well technology for nearly 100% fill factor and full CMOS pixels. Sensors 2009, 8, 5336–5351.
[28]  Wilman, E.S.; Gardiner, S.H.; Nomerotski, A.; Turchetta, R.; Brouard, M.; Vallance, C. A new detector for mass spectrometry: Direct detection of low energy ions using multi-pixel photon counter. Rev. Sci. Instrm. 2012, 83, doi:10.1063/1.3676164.
[29]  Sato, Y.; Arai, Y.; Ikeda, H.; Nagamine, T.; Takubo, Y.; Tauchi, T.; Yamamoto, H. SOI readout ASIC of pair monitor for International Linear Collider. Nucl. Instrum. Meth. Phys. Res. A 2011, 637, 53–59.
[30]  Segawa, M.; Kai, T.; Sakai, T.; Ooi, M.; Kureta, M. Development of a high-speed camera system for neutron imaging at a pulsed neutron source. Nucl. Instrum. Meth. Phys. Res. A 2013, 697, 77–83.
[31]  Suyama, M.; Kageyama, A.; Mizuno, I.; Kinoshita, K.; Muramatsu, M.; Yamamoto, K. An electron bombardment CCD tube. Proceedings of Ultrahigh- and High-Speed Photography and Image-based Motion Measurement, San Diego, CA, USA, 27 July 1997; pp. 422–429.
[32]  El-Desouki, M.M.; Deen, M.J.; Fang, Q.; Liu, L.; Tse, F.; Armstrong, D. CMOS image sensors for high speed applications. Sensors 2009, 9, 430–444.
[33]  El-Desouki, M.M.; Marinov, O.; Deen, M.J.; Fang, Q. CMOS active-pixel sensor with in situ memory for ultrahigh-speed imaging. IEEE Sens. J. 2011, 11, 1375–1379.
[34]  Kleinfelder, S.; Chen, Y.; Kwiatkowski, K.; Shah, A. High-speed CMOS image sensor circuits with in situ frame storage. IEEE Trans. Nucl. Sci. 2004, 51, 1648–1656.
[35]  Kleinfelder, S.; Chiang, S.-H.W.; Huang, W.; Shah, A.; Kwiatkowski, K. High-speed high dynamic range optical sensor arrays. IEEE Trans. Nucl. Sci. 2009, 56, 1069–1075.
[36]  Akahane, N.; Sugawa, S.; Adachi, S.; Mori, K.; Ishiuchi, T.; Mizobuchi, K. A sensitivity and linearity improvement of a 100-dB dynamic range CMOS image sensor using lateral overflow integration capacitor. IEEE J.Solid-State Circuits 2006, 41, 851–858.
[37]  Douence, V.M.; Bai, Y.; Durmus, H.; Joshi, A.B.; Pettersson, P.-O.; Sahoo, D.; Kwaiatkowski, K.; King, N.S.; Morris, K.; Wilke, M.D. Hybrid image sensor with multiple on-chip frame storage for ultrahigh-speed imaging. Proceedings of 26th International Congress on High-Speed Photography and Photonics, Alexandria, VA, USA, 19 September 2004; pp. 226–234.
[38]  Hynecek, J. CCM—A new low-noise charge carrier multiplier suitable for detection of charge in small pixel CCD image sensors. IEEE Trans. Electron. Devices 1992, 39, 1972–1975.
[39]  Charbon, E. CMOS integration enables massively parallel single-photon detection. SPIE Newsroom 2011, doi:10.1117/2.1201102.003182.
[40]  Abstracts of Session 33of the 2012 IEDM. Available online: http://www.his.com/~iedm/program/sessions/s33.html (accessed on 1 February 2013).
[41]  Lee, K.-W.; Ohara, Y.; Kiyoyama, K.; Konno, S.; Sato, Y.; Watanabe, S.; Yabata, A.; Bea, J.C.; Hashimoto, H.; Fukushima, T.; Tanaka, T.; Koyanagi, M. Characterization of chip-level hetero-integration technology for high-speed, highly parallel 3D Stacked image processing system. Proceedings of IEEE International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 33.2.1–33.2.4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133