The ISIS is an ultra-fast image sensor with in-pixel storage. The evolution of the ISIS in the past and in the near future is reviewed and forecasted. To cover the storage area with a light shield, the conventional frontside illuminated ISIS has a limited fill factor. To achieve higher sensitivity, a BSI ISIS was developed. To avoid direct intrusion of light and migration of signal electrons to the storage area on the frontside, a cross-sectional sensor structure with thick pnpn layers was developed, and named “Tetratified structure”. By folding and looping in-pixel storage CCDs, an image signal accumulation sensor, ISAS, is proposed. The ISAS has a new function, the in-pixel signal accumulation, in addition to the ultra-high-speed imaging. To achieve much higher frame rate, a multi-collection-gate (MCG) BSI image sensor architecture is proposed. The photoreceptive area forms a honeycomb-like shape. Performance of a hexagonal CCD-type MCG BSI sensor is examined by simulations. The highest frame rate is theoretically more than 1Gfps. For the near future, a stacked hybrid CCD/CMOS MCG image sensor seems most promising. The associated problems are discussed. A fine TSV process is the key technology to realize the structure.
References
[1]
Single-Photon Imaging, 1st ed.; Seitz, P., Theuwissen, A.J.P., Eds.; Springer: New York, NY, USA, 2011.
[2]
Versluis, M.; Schmitz, B.; von der Heydt, A.; Lohse, D. How snapping shrimp snap: Through cavitating bubbles. Science 2000, 289, 2114–2117.
[3]
Etoh, T. A high-speed video camera operating at 4,500 fps. ITE J. 1992, 46, 543–545. (in Japanese).
Maruyama, Y.; Charbon, E. A time-gated 128 × 128 CMOS SPAD array for on-chip detection. Proceedings of International Image Sensor Workshop, Hokkaido, Japan, 8–11 June 2011.
[6]
Etoh, T.G.; Poggemann, D.; Ruckelshausen, A.; Theuwissen, A.; Kreider, G.; Folkerts, O.-H.; Mutoh, H.; Kondo, Y.; Maruno, H.; Takubo, K.; et al. A CCD image sensor of 1 Mframes/s for continuous image capturing of 103 frames. Proceedings of International Solid-State Circuits Conference, San Francisco, CA, USA, 3–7 February 2002. Digest of Technical Papers; pp. 46–47.
[7]
Etoh, T.G.; Nguyen, D.H.; Dao, V.T.S.; Vo Le, C.; Tanaka, M.; Takehara, K.; Okinaka, T.; van Kuijk, H.; Klaasens, W.; Bosiers, J.; et al. A 16 Mfps 165 kpixel backside-illuminated CCD. Proceedings of International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011. Digest of Technical Papers; pp. 406–407.
[8]
Ohtake, H.; Hayashida, T.; Kitamura, K.; Arai, T.; Yonai, J.; Tanioka, K.; Maruyama, H.; Etoh, T. 300,000-pixel ultrahigh-speed high-sensitivity CCD and a single-chip color camera mounting this CCD. Broadcast Technol. 2006, 28, 2–9.
[9]
Arai, T.; Yonai, J.; Hayashida, T.; Ohtake, H.; van Kuijk, H.; Etoh, T.G. Back-Side-Illuminated image sensor with burst capturing speed of 5.2 Tpixels per second. Proceedings of Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, Burlingame, CA, USA, 3 February 2013.
[10]
Etoh, T.G.; Takehara, K. Needs, requirements, and new proposals for ultra-high-speed video cameras in Japan. Proceedings of SPIE 21st International Congress on High-Speed Photography and Photonics, Taejon, Korea, 29 August 1994; pp. 231–242.
[11]
Takano, Y.; Etoh, T.G.; Takehara, K. Users’ requirements and specification on high-speed video cameras. J. Visual. Soc. Jpn. 2003, 23, 11–14. (in Japanese).
[12]
Etoh, T.G.; Vo Le, C.; Hashishin, Y.; Otsuka, N.; Takehara, K.; Ohtake, H.; Hayashida, T.; Maruyama, H. Evolution of ultra-high-speed CCD imagers. Plasma Fusion Res. 2007, 2, 1–8.
[13]
Dao, V.T.S.; Etoh, T.G.; Dung, N.H.; Vo Le, C.; Takehara, K.; Akino, T.; Nishi, K.; Aoki, H.; Nakai, J. Toward 100 Mega-frames per second: Design of an ultimate ultra-high-speed image sensor. Sensors 2010, 10, 16–35.
[14]
Etoh, T.G.; Dao, V.T.S.; Akino, T.K.; Akino, T.; Nishi, K.; Kureta, M.; Arai, M. Ultra-High-Speed image signal accumulation sensor. Sensors 2010, 10, 4100–4113.
[15]
Yamada, T.; Dao, V.T.S.; Etoh, T. An ultra-high-speed image sensor operating at more than 100 Mfps—A new architecture toward an ultimate high-speed imaging. ITE Tech. Rep. 2012, 36, 5–8. (in Japanese).
[16]
Vo Le, C.; Etoh, T.G.; Nguyen, H.D.; Dao, V.T.S.; Soya, H.; Lesser, M.; Ouellette, D.; van Kuijk, H.; Bosiers, J.; Ingram, G. A backside-illuminated image sensor with 200,000 pixels operating at 250, 000 frames per second. IEEE Trans.Electron Devices. 2009, 56, 2556–2652.
[17]
Mitsunaga, M.; Uesugi, N.; Sasaki, H.; Karaki, K. Holographic motion picture by Eu3+:Y2SiO5. Opt. Lett. 1994, 19, 752–754.
[18]
Shiraga, H.; Fujioka, S.; Jaanimagi, P.A.; Stoeckl, C.; Stephens, R.B.; Nagatomo, H.; Tanaka, K.A.; Kodama, R.; Azechi, H. Multi-imaging x-ray streak camera for ultrahigh-speed two dimensional x-ray imaging of imploded core plasmas. Rev. Sci. Instr. 2004, 75, 3921–3925.
[19]
Awatsuji, Y.; Kubota, T. Moving picture of three-dimensional image of femtosecond light pulse propagating in three-dimensional space. AIP Conf. Proc. 2007, 949, 218–225.
[20]
Cussans, D.; Goldstein, J.; Payton, O.; Stuttard, T.; Mandry, S.; Velthuis, J.J.; Stefanov, K.D.; Zhang, Z.; Banda, Y.; Cheplakov, A.; et al. Results from the ISIS 1 detector. Nucl. Instrum. Meth. Phys. Res. A 2009, 604, 393–396.
[21]
Crooks, J.; Marsh, B.; Turchetta, R.; Taylor, K.; Chan, W.; Lahav, A.; Fenigstein, A. Kirana: A solid-state megapixel uCMOS image sensor for ultrahigh speed imaging. Proceedings of Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, Burlingame, CA, USA, 3 February 2013.
[22]
Tochigi, Y.; Hanzawa, K.; Kato, Y.; Kuroda, R.; Mutoh, H.; Hirose, R.; Tominaga, H.; Takubo, K.; Kondo, Y.; Sugawa, S. A global-shutter CMOS image sensor with readout speed of 1 Tpixel/s burst and 780 Mpixel/s continuous. Proceedings of International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012. Digest of Technical Papers; pp. 382–383.
[23]
Tochigi, Y.; Hanzawa, K.; Kato, Y.; Kuroda, R.; Mutoh, H.; Hirose, R.; Tominaga, H.; Takubo, K.; Kondo, Y.; Sugawa, S. A global-shutter CMOS image sensor with readout speed of 1 Tpixel/s burst and 780 Mpixel/s continuous. IEEE J.Solid-State Circuits 2013, 48, 329–338.
[24]
Kosonocky, W.F.; Guand, Y.; Chao, Y.; Kabra, R.K.; Xie, L.; Lawrence, J.L.; Mastrocolla, V.; Shallcross, F.V.; Patel, V. 360×360-element very-high-frame-rate burst image sensor. Proceedings of International Solid-State Circuits Conference, San Francisco, CA, USA, 8–10 February 1996. Digest of Technical Papers; pp. 182–183.
[25]
Lazuvsky, L.; Gismas, G.; Allan, G.; Given, D. CCD sensor and camera for 100 Mfps burst frame rate image capture. Proceedings of Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications II, Orlando, FL, USA, 28 March 2005; pp. 184–190.
[26]
Etoh, T.G.; Dao, V.T.S.; Nguyen, H.D.; Fife, K.; Kureta, M.; Segawa, M.; Arai, M.; Shinohara, T. Progress of ultra-high-speed image sensors with in situ CCD storage. Proceedings of International Image Sensor Workshop, Hokkaido, Japan, 8–11 June 2011.
[27]
Ballin, J.A.; Crooks, J.P.; Dauncey, P.D.; Magnan, A.-M.; Mikami, Y.; Noy, M.; Rajovic, V.; Stanizki, M.M.; Stefanov, K.D.; Turchetta, R.; et al. Monolithic active pixel sensors (MAPS) in a quadruple well technology for nearly 100% fill factor and full CMOS pixels. Sensors 2009, 8, 5336–5351.
[28]
Wilman, E.S.; Gardiner, S.H.; Nomerotski, A.; Turchetta, R.; Brouard, M.; Vallance, C. A new detector for mass spectrometry: Direct detection of low energy ions using multi-pixel photon counter. Rev. Sci. Instrm. 2012, 83, doi:10.1063/1.3676164.
[29]
Sato, Y.; Arai, Y.; Ikeda, H.; Nagamine, T.; Takubo, Y.; Tauchi, T.; Yamamoto, H. SOI readout ASIC of pair monitor for International Linear Collider. Nucl. Instrum. Meth. Phys. Res. A 2011, 637, 53–59.
[30]
Segawa, M.; Kai, T.; Sakai, T.; Ooi, M.; Kureta, M. Development of a high-speed camera system for neutron imaging at a pulsed neutron source. Nucl. Instrum. Meth. Phys. Res. A 2013, 697, 77–83.
[31]
Suyama, M.; Kageyama, A.; Mizuno, I.; Kinoshita, K.; Muramatsu, M.; Yamamoto, K. An electron bombardment CCD tube. Proceedings of Ultrahigh- and High-Speed Photography and Image-based Motion Measurement, San Diego, CA, USA, 27 July 1997; pp. 422–429.
[32]
El-Desouki, M.M.; Deen, M.J.; Fang, Q.; Liu, L.; Tse, F.; Armstrong, D. CMOS image sensors for high speed applications. Sensors 2009, 9, 430–444.
[33]
El-Desouki, M.M.; Marinov, O.; Deen, M.J.; Fang, Q. CMOS active-pixel sensor with in situ memory for ultrahigh-speed imaging. IEEE Sens. J. 2011, 11, 1375–1379.
[34]
Kleinfelder, S.; Chen, Y.; Kwiatkowski, K.; Shah, A. High-speed CMOS image sensor circuits with in situ frame storage. IEEE Trans. Nucl. Sci. 2004, 51, 1648–1656.
[35]
Kleinfelder, S.; Chiang, S.-H.W.; Huang, W.; Shah, A.; Kwiatkowski, K. High-speed high dynamic range optical sensor arrays. IEEE Trans. Nucl. Sci. 2009, 56, 1069–1075.
[36]
Akahane, N.; Sugawa, S.; Adachi, S.; Mori, K.; Ishiuchi, T.; Mizobuchi, K. A sensitivity and linearity improvement of a 100-dB dynamic range CMOS image sensor using lateral overflow integration capacitor. IEEE J.Solid-State Circuits 2006, 41, 851–858.
[37]
Douence, V.M.; Bai, Y.; Durmus, H.; Joshi, A.B.; Pettersson, P.-O.; Sahoo, D.; Kwaiatkowski, K.; King, N.S.; Morris, K.; Wilke, M.D. Hybrid image sensor with multiple on-chip frame storage for ultrahigh-speed imaging. Proceedings of 26th International Congress on High-Speed Photography and Photonics, Alexandria, VA, USA, 19 September 2004; pp. 226–234.
[38]
Hynecek, J. CCM—A new low-noise charge carrier multiplier suitable for detection of charge in small pixel CCD image sensors. IEEE Trans. Electron. Devices 1992, 39, 1972–1975.
Abstracts of Session 33of the 2012 IEDM. Available online: http://www.his.com/~iedm/program/sessions/s33.html (accessed on 1 February 2013).
[41]
Lee, K.-W.; Ohara, Y.; Kiyoyama, K.; Konno, S.; Sato, Y.; Watanabe, S.; Yabata, A.; Bea, J.C.; Hashimoto, H.; Fukushima, T.; Tanaka, T.; Koyanagi, M. Characterization of chip-level hetero-integration technology for high-speed, highly parallel 3D Stacked image processing system. Proceedings of IEEE International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 33.2.1–33.2.4.