In this paper, a new modeling approach for Dielectrophoresis (DEP) based particle manipulation is presented. The proposed method fulfills missing links in finite element modeling between the multiphysic simulation and the biological behavior. This technique is amongst the first steps to develop a more complex platform covering several types of manipulations such as magnetophoresis and optics. The modeling approach is based on a hybrid interface using both ANSYS and MATLAB to link the propagation of the electrical field in the micro-channel to the particle motion. ANSYS is used to simulate the electrical propagation while MATLAB interprets the results to calculate cell displacement and send the new information to ANSYS for another turn. The beta version of the proposed technique takes into account particle shape, weight and its electrical properties. First obtained results are coherent with experimental results.
References
[1]
Ghallab, Y.; Badawy, W. A novel CMOS lab-on-a-chip for biomedical applications. 2005, 2, 1346–1349.
[2]
Lee, H.; Liu, Y.; Ham, D.; Westervelt, R. Integrated cell manipulation system—CMOS/microfluidic hybrid. Lab Chip 2007, 7, 331–337.
[3]
Becker, F.F.; Wang, X.B.; Huang, Y.; Pethig, R.; Vykoukal, J.; Gascoyne, P.R. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. USA 1995, 92, 860–864.
[4]
Ghallab, Y.H.; Badaw, W. Lab-on-a-Chip: Techniques, Circuits, and Biomedical Applications; Artech House: Norwood, MA, USA, 2010.
[5]
Burleson, W.; Clark, S.S.; Ransford, B.; Fu, K. Design Challenges for Secure Implantable Medical Devices. Proceedings of the 49th Annual Design Automation Conference, San Francisco, CA, USA, 3–7 June 2012; pp. 12–17.
[6]
Strambini, L.M.; Longo, A.; Diligenti, A.; Barillaro, G. A minimally invasive microchip for transdermal injection/sampling applications. Lab Chip 2012, 12, 3370–3379.
[7]
Breussin, F. Microsystems Devices Driving Healthcare Applications; Technical Report for Yole Development: Villeurbanne, France, 2010.
[8]
Teymoori, M.M.; Abbaspour-Sani, E. Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens. Actuators A Phys. 2005, 117, 222–229.
[9]
Korsmeyer, T.; Zeng, J.; Greiner, K. Design Tools for BioMEMS. Proceedings of the Annual Design Automation Conference, San Diego, CA, USA, 7–11 June 2004; pp. 622–628.
[10]
Trebotich, D.; Zahn, J.; Liepmann, D. Complex Fluid Dynamics in BioMEMS Devices: Modeling of Microfabricated Microneedles. Proceedings of the 2002 International Conference Modeling Simulation Microsystems, San Juan, Puerto Rico, 22–25 April 2002; pp. 10–13.
[11]
White, J. CAD Challenges in BioMEMS Design. Proceedings of the IEEE Conference Design Automation, San Diego, CA, USA, 7–11 June 2004; pp. 629–632.
[12]
Crary, S.; Zhang, Y. CAEMEMS: An Integrated Computer-Aided Engineering Workbench for Micro-Electro-Mechanical Systems. Proceedings of the IEEE Micro Electro Mechanical Systems on An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, Napa Valley, CA,USA, 11–14 February 1990; pp. 113–114.
[13]
Aluru, N.; White, J. A Fast Integral Equation Technique for Analysis of Microflow Sensors Based on Drag Force Calculations. Proceedings of the International Conference on Modeling Simulation Microsystems, Semiconductors, Sensors Actuators, Santa Clara, CA, USA, 6–8 April 1998; pp. 283–286.
[14]
Gagne, A.; Miled, M.A.; Sawan, M. An Improved Multiphysics Modelling Approach for Dielectrophoresis Based Cell Separation. Proceedings of the 24th Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, Canada, 8–11 May 2011; pp. 1387–1390.
[15]
Baronas, R.; Gaidamauskaite, E.; Kulys, J. Modelling a peroxidase-based optical biosensor. Sensors 2007, 7, 2723–2740.
[16]
Baronas, R.; Ivanauskas, F.; Kulys, J. Mathematical modeling of biosensors based on an array of enzyme microreactors. Sensors 2006, 6, 453–465.
Voldman, J. A Microfabricated Dielectrophoretic Trapping Array for Cell-Based Biological Assays. Ph.D. Thesis., Massachusetts Institute of Technology, Middlesex, MA, USA, 2001.
[19]
Phillips, J.; White, J. A precorrected-FFT method for electrostatic analysis of complicated 3-D structures. IEEE Trans. Comput. Aided Des. Integ. Circ. Syst. 1997, 16, 1059–1072.
[20]
Coelho, C.P.; White, J.; Silveira, L.M. Dealing with stiffness in time-domain Stokes flow simulation. Conf Nanotech. 2004, 2, 387–390.
[21]
Hung, E.; Yang, Y.J.; Senturia, S. Low-order models for fast dynamical simulation of MEMS microstructures. Int. Conf. Solid State Sens. Actuators 1997, 2, 1101–1104.
[22]
Aluru, N.; White, J. A multilevel Newton method for mixed-energy domain simulation of MEMS. J. Microelectromech. Syst. 1999, 8, 299–308.
[23]
De, S.; Aluru, N. Full-lagrangian schemes for dynamic analysis of electrostatic MEMS. J. Microelectromech. Syst. 2004, 13, 737–758.
[24]
Hsiung, L.C.; Chiang, C.L.; Wang, C.H.; Huang, Y.H.; Kuo, C.T.; Cheng, J.Y.; Lin, C.H.; Wu, V.; Chou, H.Y.; Jong, D.S.; Lee, H.; Wo, A. Dielectrophoresis-based cellular microarray chip for anticancer drug screening in perfusion microenvironments. Lab Chip 2011, 11, 2333–2342.
[25]
Kang, K.H.; Kang, Y.; Xuan, X.; Li, D. Continuous separation of microparticles by size with Direct current-dielectrophoresis. Electrophoresis 2006, 27, 694–702.
[26]
Chuang, C.H.; Huang, Y.W.; Wu, Y.T. Dielectrophoretic chip with multilayer electrodes and micro-cavity array for trapping and programmably releasing single cells. Biomed. Microdev. 2012, 14, 271–278.
[27]
Wang, X.; Wang, X.B.; Becker, F.F.; Gascoyne, P.R.C. A theoretical method of electrical field analysis for dielectrophoretic electrode arrays using Green's theorem. J. Phys. D Appl. Phys. 1996, 29, 1649–1660.
[28]
Herbert, P.A. Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields; Cambridge University Press: Cambridge, UK, 1978.
[29]
Ramos, A.; Morgan, H.; Green, N.G.; Castellanos, A. AC electrokinetics: A review of forces in microelectrode structures. J. Phys. D Appl. Phys. 1998, 31, 2338–2353.
[30]
Hughes, M.P.; Pethig, R.; Wang, X.B. Dielectrophoretic forces on particles in travelling electric fields. J. Phys. D Appl. Phys. 1996, 29, 474–482.
[31]
Kua, C.H.; Lam, Y.C.; Yang, C.; Youcef-Toumi, K.; Rodriguez, I. Modeling of dielectrophoretic force for moving dielectrophoresis electrodes. J. Electrostat. 2008, 66, 514–525.
[32]
Masuda, S.; Kamimura, T. Approximate methods for calculating a non-uniform travelling field. J. Electrostat. 1975, 1, 351–370.
[33]
Miled, M.; Sawan, M. Dielectrophoresis-based integrated lab-on-chip for nano and micro-particles manipulation and capacitive detection. IEEE Trans. Biomed. Circ. Syst. 2012, 6, 120–132.
[34]
Miled, M.; El-Achkar, C.; Sawan, M. Low-Voltage Dielectrophoretic Platform for Lab-on-Chip Biosensing Applications. Proceedings of the 8th IEEE International NEWCAS Conference, Montreal, Canada, 20–23 June 2010; pp. 389–392.
[35]
Miled, M.A.; Massicotte, G.; Sawan, M. Low-voltage lab-on-chip for micro and nanoparticles manipulation and detection: Experimental results. Analog Integ. Circ. Signal Process. 2012, 73, 1–11.