全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Nanobiosensors Based on Chemically Modified AFM Probes: A Useful Tool for Metsulfuron-Methyl Detection

DOI: 10.3390/s130201477

Keywords: enzymes, herbicides, nanobiosensors, atomic force microscopy, atomic force spectroscopy, acetolactate synthase, chemical force microscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of agrochemicals has increased considerably in recent years, and consequently, there has been increased exposure of ecosystems and human populations to these highly toxic compounds. The study and development of methodologies to detect these substances with greater sensitivity has become extremely relevant. This article describes, for the first time, the use of atomic force spectroscopy (AFS) in the detection of enzyme-inhibiting herbicides. A nanobiosensor based on an atomic force microscopy (AFM) tip functionalised with the acetolactate synthase (ALS) enzyme was developed and characterised. The herbicide metsulfuron-methyl, an ALS inhibitor, was successfully detected through the acquisition of force curves using this biosensor. The adhesion force values were considerably higher when the biosensor was used. An increase of ~250% was achieved relative to the adhesion force using an unfunctionalised AFM tip. This considerable increase was the result of a specific interaction between the enzyme and the herbicide, which was primarily responsible for the efficiency of the nanobiosensor. These results indicate that this methodology is promising for the detection of herbicides, pesticides, and other environmental contaminants.

References

[1]  Goodland, R. Environmental sustainability in agriculture: Diet matters. Ecol. Econ. 1997, 23, 189–200.
[2]  Vinnari, M.; Tapio, P. Sustainability of diets: From concepts to governance. Ecol. Econ. 2012, 74, 46–54.
[3]  Tukker, A.; Goldbohm, R.A.; de Koning, A.; Verheijden, M.; Kleijn, R.; Wolf, O.; Perez-Dominguez, I.; Rueda-Cantuche, J.M. Environmental impacts of changes to healthier diets in europe. Ecol. Econ. 2011, 70, 1776–1788.
[4]  Engstrom, R.; Nilsson, M.; Finnveden, G. Which environmental problems get policy attention? Examining energy and agricultural sector policies in sweden. Environ. Impact Assess. Rev. 2008, 28, 241–255.
[5]  Soloneski, S.; Gonzalez, N.V.; Reigosa, M.A.; Larramendy, M.L. Herbicide 2,4-dichlorophenoxyacetic acid (2,4-d)-induced cytogenetic damage in human lymphocytes in vitro in presence of erythrocytes. Cell Biol. Int. 2007, 31, 1316–1322.
[6]  Kale, V.M.; Miranda, S.R.; Wilbanks, M.S.; Meyer, S.A. Comparative cytotoxicity of alachlor, acetochlor, and metolachlor herbicides in isolated rat and cryopreserved human hepatocytes. J. Biochem. Mol. Toxicol. 2008, 22, 41–50.
[7]  Martinez, A.; Reyes, I.; Reyes, N. Cytotoxicity of the herbicide glyphosate in human peripheral blood mononuclear cells. Biomedica 2007, 27, 594–604.
[8]  Nikoloff, N.; Soloneski, S.; Larramendy, M.L. Genotoxic and cytotoxic evaluation of the herbicide flurochloridone on chinese hamster ovary (cho-k1) cells. Toxicol. In Vitro 2012, 26, 157–163.
[9]  Soloneski, S.; Larramendy, M.L. Sister chromatid exchanges and chromosomal aberrations in chinese hamster ovary (cho-k1) cells treated with the insecticide pirimicarb. J. Hazard. Mater. 2010, 174, 410–415.
[10]  Stobiecka, M.; Prance, A.; Coopersmith, K.; Hepel, M. Antioxidant Effectiveness in Preventing Paraquat-Mediated Oxidative DNA Damage in the Presence of H2O2. In Oxidative Stress: Diagnostics and Therapy; Andreescu, S., Hepel, M., Eds.; Oxford University Press, Inc.: Washington, DC, USA, 2011; Volume 1083, pp. 211–233.
[11]  Stobiecka, M.; Coopersmith, K.; Cutler, S.; Hepel, M. Novel DNA-hybridization biosensors for studies of DNA underwinding caused by herbicides and pesticides. ECS Trans. 2010, 28, 1–12.
[12]  Hepel, M.; Stobiecka, M. Interactions of Herbicide Atrazine with DNA; Nova Science Publishers: New York, NY, USA, 2008; p. 66.
[13]  Cohen, M. Environmental toxins and health—The health impact of pesticides. Aust. Fam. Physician 2007, 36, 1002–1004.
[14]  Scordino, M.; Sabatino, L.; Traulo, P.; Gagliano, G.; Gargano, M.; Panto, V.; Gambino, G.L. Lc/ms/ms detection of fungicide guazatine residues for quality assessment of commercial citrus fruit. Eur. Food Res. Technol. 2008, 227, 1339–1347.
[15]  Gulati, K.; Banerjee, B.; Lall, S.B.; Ray, A. Effects of diesel exhaust, heavy metals and pesticides on various organ systems: Possible mechanisms and strategies for prevention and treatment. Indian J. Exp. Biol. 2010, 48, 710–721.
[16]  Kapka-Skrzypczak, L.; Cyranka, M.; Skrzypczak, M.; Kruszewski, M. Biomonitoring and biomarkers of organophosphate pesticides exposure-state of the art. Ann. Agric. Env. Med. 2011, 18, 294–303.
[17]  Jurewicz, J.; Hanke, W.; Johansson, C.; Lundqvist, C.; Ceccatelli, S.; van den Hazel, P.; Saunders, M.; Zetterstrom, R. Adverse health effects of children's exposure to pesticides: What do we really know and what can be done about it. Acta Paediat. 2006, 95, 71–80.
[18]  Jurewicz, J.; Hanke, W.; Ligocka, D. Exposure to pesticides among women in reproductive age working in polish greenhouses. Epidemiology 2006, 17, S460–S460.
[19]  Masojidek, J.; Soucek, P.; Machova, J.; Frolik, J.; Klem, K.; Maly, J. Detection of photosynthetic herbicides: Algal growth inhibition test vs. Electrochemical photosystem ii biosensor. Ecotox. Environ. Saf. 2011, 74, 117–122.
[20]  Liu, R.; Guan, G.; Wang, S.; Zhang, Z. Core-shell nanostructured molecular imprinting fluorescent chemosensor for selective detection of atrazine herbicide. Analyst 2011, 136, 184–190.
[21]  Boro, R.C.; Kaushal, J.; Nangia, Y.; Wangoo, N.; Bhasin, A.; Suri, C.R. Gold nanoparticles catalyzed chemiluminescence immunoassay for detection of herbicide 2,4-dichlorophenoxyacetic acid. Analyst 2011, 136, 2125–2130.
[22]  Byzova, N.A.; Zherdev, A.V.; Zvereva, E.A.; Dzantiev, B.B. Immunochromatographic assay with photometric detection for rapid determination of the herbicide atrazine and other triazines in foodstuffs. J. AOAC Int. 2010, 93, 36–43.
[23]  Sharma, P.; Gandhi, S.; Chopra, A.; Sekar, N.; Suri, C.R. Fluoroimmunoassay based on suppression of fluorescence self-quenching for ultra-sensitive detection of herbicide diuron. Anal. Chim. Acta 2010, 676, 87–92.
[24]  Vladkova, R.; Ivanova, P.; Krasteva, V.; Misra, A.N.; Apostolova, E. Assessment of chlorophyll fluorescence and photosynthetic oxygen evolution parameters in development of biosensors for detection of q(b) binding herbicides. C. R. Acad. Bulg. Sci. 2009, 62, 355–360.
[25]  Alfinito, E.; Millithaler, J.F.; Pennetta, C.; Reggiani, L. A single protein based nanobiosensor for odorant recognition. Microelectron. J. 2010, 41, 718–722.
[26]  Songa, E.A.; Somerset, V.S.; Waryo, T.; Baker, P.G.L.; Iwuoha, E.I. Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure Appl. Chem. 2009, 81, 123–139.
[27]  Songa, E.A.; Waryo, T.; Jahed, N.; Baker, P.G.L.; Kgarebe, B.V.; Iwuoha, E.I. Electrochemical nanobiosensor for glyphosate herbicide and its metabolite. Electroanalysis 2009, 21, 671–674.
[28]  Cheng, M.S.; Lau, S.H.; Chow, V.T.; Toh, C.S. Membrane-based electrochemical nanobiosensor for escherichia coli detection and analysis of cells viability. Environ. Sci. Technol. 2011, 45, 6453–6459.
[29]  Frisbie, C.D.; Rozsnyai, L.F.; Noy, A.; Wrighton, M.S.; Lieber, C.M. Functional-group imaging by chemical force microscopy. Science 1994, 265, 2071–2074.
[30]  Noy, A.; Frisbie, C.D.; Rozsnyai, L.F.; Wrighton, M.S.; Lieber, C.M. Chemical force microscopy-exploiting chemically-modified tips to quantify adhesion, friction, and functional-group distributions in molecular assemblies. J. Am. Chem. Soc. 1995, 117, 7943–7951.
[31]  Steffens, C.; Leite, F.L.; Bueno, C.C.; Manzoli, A.; Herrmann, P.S.D. Atomic force microscopy as a tool applied to nano/biosensors. Sensors 2012, 12, 8278–8300.
[32]  Dague, E.; Alsteens, D.; Latge, J.P.; Verbelen, C.; Raze, D.; Baulard, A.R.; Dufrene, Y.F. Chemical force microscopy of single live cells. Nano Lett. 2007, 7, 3026–3030.
[33]  Dufrene, Y.F. Atomic force microscopy and chemical force microscopy of microbial cells. Nat. Protoc. 2008, 3, 1132–1138.
[34]  Fiorini, M.; McKendry, R.; Cooper, M.A.; Rayment, T.; Abell, C. Chemical force microscopy with active enzymes. Biophys. J. 2001, 80, 2471–2476.
[35]  Kim, H.; Park, J.H.; Cho, I.H.; Kim, S.K.; Paek, S.H.; Lee, H. Selective immobilization of proteins on gold dot arrays and characterization using chemical force microscopy. J. Colloid Interface Sci. 2009, 334, 161–166.
[36]  Noy, A.; Vezenov, D.V.; Lieber, C.M. Chemical force microscopy. Annu. Rev. Mater. Sci. 1997, 27, 381–421.
[37]  Butt, H.J.; Cappella, B.; Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 2005, 59, 1–152.
[38]  Ito, T.; Grabowska, I.; Ibrahim, S. Chemical-force microscopy for materials characterization. TrAC-Trend. Anal. Chem. 2010, 29, 225–233.
[39]  Cecchet, F.; Duwez, A.S.; Gabriel, S.; Jerome, C.; Jerome, R.; Glinel, K.; Demoustier-Champagne, S.; Jonas, A.M.; Nysten, B. Atomic force microscopy investigation of the morphology and the biological activity of protein-modified surfaces for bio- and immunosensors. Anal. Chem. 2007, 79, 6488–6495.
[40]  Hlinka, J.; Hodacova, J.; Raehm, L.; Granier, M.; Ramonda, M.; Durand, J.O. Attachment of trianglamines to silicon wafers, chiral recognition by chemical force microscopy. C. R. Chim. 2010, 13, 481–485.
[41]  Ditzler, L.R.; Sen, A.; Gannon, M.J.; Kohen, A.; Tivanski, A.V. Self-assembled enzymatic monolayer directly bound to a gold surface: Activity and molecular recognition force spectroscopy studies. J. Am. Chem. Soc. 2011, 133, 13284–13287.
[42]  Jauvert, E.; Dague, E.; Severac, M.; Ressier, L.; Caminade, A.M.; Majoral, J.P.; Trevisiol, E. Probing single molecule interactions by afm using bio-functionalized dendritips. Sens. Actuators B Chem. 2012, 168, 436–441.
[43]  Leite, F.L.; Borato, C.E.; da Silva, W.T.L.; Herrmann, P.S.P.; Oliveira, O.N.; Mattoso, L.H.C. Atomic force spectroscopy on poly(o-ethoxyaniline) nanostructured films: Sensing nonspecific interactions. Microsc. Microanal. 2007, 13, 304–312.
[44]  Leite, F.L.; Herrmann, P.S.P. Application of atomic force spectroscopy (afs) to studies of adhesion phenomena: A review. J. Adhes. Sci. Technol. 2005, 19, 365–405.
[45]  Chipman, D.; Barak, Z.A.; Schloss, J.V. Biosynthesis of 2-aceto-2-hydroxy acids: Acetolactate synthases and acetohydroxyacid synthases. BBA-Protein Struct. Mol. Enzym. 1998, 1385, 401–419.
[46]  Muhitch, M.J.; Shaner, D.L.; Stidham, M.A. Imidazolinones and acetohydroxyacid synthase from higher-plants - properties of the enzyme from maize suspension-culture cells and evidence for the binding of imazapyr to acetohydroxyacid synthase invivo. Plant Physiol. 1987, 83, 451–456.
[47]  Franca, E.F.; Leite, F.L.; Cunha, R.A.; Oliveira, O.N.; Freitas, L.C.G. Designing an enzyme-based nanobiosensor using molecular modeling techniques. Phys. Chem. Chem. Phys. 2011, 13, 8894–8899.
[48]  Albrecht, A.J.P.; Albrecht, L.P.; Migliavacca, R.A.; Reche, D.L.; Gasparotto, A.C.; ávila, M.R. Metsulfuron-methyl over agronomic performance and seed quality of wheat crop. Rev. Bras. Herbicidas 2010, 9, 54–62.
[49]  Kawai, K.; Kaku, K.; Izawa, N.; Shimizu, M.; Kobayashi, H.; Shimizu, T. Herbicide sensitivities of mutated enzymes expressed from artificially generated genes of acetolactate synthase. J. Pestic. Sci. 2008, 33, 128–137.
[50]  Wang, H.D.; Bash, R.; Yodh, J.G.; Hager, G.L.; Lohr, D.; Lindsay, S.M. Glutaraldehyde modified mica: A new surface for atomic force microscopy of chromatin. Biophys. J. 2002, 83, 3619–3625.
[51]  Touhami, A.; Hoffmann, B.; Vasella, A.; Denis, F.A.; Dufrene, Y.F. Probing specific lectin-carbohydrate interactions using atomic force microscopy imaging and force measurements. Langmuir 2003, 19, 1745–1751.
[52]  Hutter, J.L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873.
[53]  Larossa, R.A.; Schloss, J.V. Tthe sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in salmonella typhimurim. J. Biol. Chem. 1984, 259, 8753–8757.
[54]  Costa, L.T.; Vilani, C.; Peripolli, S.; Stavale, F.; Legnani, C.; Achete, C.A. Direct immobilization of avidin protein on afm tip functionalized by acrylic acid vapor at rf plasma. J. Mol. Recognit. 2012, 25, 256–261.
[55]  Silverstein, R.M.; Bassler, G.C.; Morril, T.C. Spectrometric Identification of Organic Compounds, 5th ed. ed.; Wiley: New York, NY, USA, 1991; p. 512.
[56]  Richards, F.M.; Knowles, J.R. Glutaraldehyde as a protein cross-linking reagent. J. Mol. Biol. 1968, 37, 231–233.
[57]  Alvarez, M.; Calle, A.; Tamayo, J.; Lechuga, L.M.; Abad, A.; Montoya, A. Development of nanomechanical biosensors for detection of the pesticide ddt. Biosens. Bioelectron. 2003, 18, 649–653.
[58]  Bache, M.; Taboryski, R.; Schmid, S.; Aamand, J.; Jakobsen, M.H. Investigations on antibody binding to a microcantilever coated with a bam pesticide residue. Nanoscale Res. Lett. 2011, doi:10.1186/1556-276X-6-386.
[59]  Kaur, J.; Singh, K.V.; Schmid, A.H.; Varshney, G.C.; Suri, C.R.; Raje, M. Atomic force spectroscopy-based study of antibody pesticide interactions for characterization of immunosensor surface. Biosens. Bioelectron. 2004, 20, 284–293.
[60]  Suri, C.R.; Kaur, J.; Gandhi, S.; Shekhawat, G.S. Label-free ultra-sensitive detection of atrazine based on nanomechanics. Nanotechnology 2008, doi:10.1088/0957-4484/19/23/235502.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133