全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Low Temperature Sensing Properties of a Nano Hybrid Material Based on ZnO Nanotetrapods and Titanyl Phthalocyanine

DOI: 10.3390/s130303445

Keywords: gas sensor, ZnO nanostructures, phthalocyanine, NO2, room temperature

Full-Text   Cite this paper   Add to My Lib

Abstract:

ZnO nanotetrapods have recently been exploited for the realization of high-sensitivity gas sensors, but they are affected by the typical drawbacks of metal-oxides, i.e., poor selectivity and a relatively high working temperature. On the other hand, it has been also demonstrated that the combined use of nanostructured metal oxides and organic molecules can improve the gas sensing performance sensitivity or selectivity, even at lower temperatures. A gas sensor device, based on films of interconnected ZnO nanotetrapods properly functionalized by titanyl phthalocyanine (TiOPc), has been realized in order to combine the high surface to volume ratio and structural stability of the crystalline ZnO nanostructures with the enhanced sensitivity of the semiconducting TiOPc molecule, especially at low temperature. The electronic properties of the resulting nanohybrid material are different from those of each single component. The response of the hybrid nanostructure towards different gases has been compared with that of ZnO nanotetrapod without functionalization in order to highlight the peculiar properties of the hybrid interaction(s). The dynamic response in time has been studied for different gases and temperatures; in particular, an increase in the response to NO 2 has been observed, even at room temperature. The formation of localized p-n heterojunctions and the possibility of exchanging charge carriers at the hybrid interface is shown to be crucial for the sensing mechanism.

References

[1]  Wang, Z.L. Nanostructures of zinc oxide. Mater. Today 2004, 7, 26–33.
[2]  Calestani, D.; Zha, M.Z.; Zanotti, L.; Villani, M.; Zappettini, A. Low temperature thermal evaporation growth of aligned ZnO nanorods on ZnO film: a growth mechanism promoted by Zn nanoclusters on polar surfaces. Cryst. Eng. Comm. 2011, 13, 1707–1712.
[3]  Zanotti, L.; Calestani, D.; Villani, M.; Zha, M.; Zappettini, A.; Paorici, C. Vapour-phase growth, purification and large-area deposition of ZnO tetrapod nanostructures. Cryst. Res. Technol. 2010, 45, 667–671.
[4]  Zha, M.Z.; Calestani, D.; Zappettini, A.; Mosca, R.; Mazzera, M.; Lazzarini, L.; Zanotti, L. Large-area self-catalysed and selective growth of ZnO nanowires. Nanotechnology 2008, 19, 325603.
[5]  Carotta, M.C.; Cervi, A.; Di Natale, V.; Gherardi, S.; Giberti, A.; Guidi, V.; Puzzovio, D.; Vendemiati, B.; Martinelli, G.; Sacerdoti, M.; et al. ZnO gas sensors: A comparison between nanoparticles and nanotetrapods-based thick films. Sens. Actuators B-Chem. 2009, 137, 164–169.
[6]  Calestani, D.; Mosca, R.; Zanichelli, M.; Villani, M.; Zappettini, A. Aldehyde detection by ZnO tetrapod-based gas sensors. J. Mater. Chem. 2011, 21, 15532–15536.
[7]  Sun, Y.-F.; Liu, S.-B.; Meng, F.-L.; Liu, J.-Y.; Ling, Z.J.; Kong, T.; Liu, J.-H. Metal oxide nanostructures and their gas sensing properties: A review. Sensors 2012, 12, 2610–2631.
[8]  Siviero, F.; Coppedè, N.; Pallaoro, A.; Taurino, A.M.; Toccoli, T.; Siciliano, P.; Iannotta, S. Hybrid n-TiO2-CuPc gas sensors sensitive to reducing species, synthesized by cluster and supersonic beam deposition. Sens. Actuators B-Chem. 2007, 126, 214–220.
[9]  Siviero, F.; Coppedè, N.; Taurino, A.M.; Toccoli, T.; Siciliano, P.; Iannotta, S. Hybrid titania–zincphthalocyanine nanostructured multilayers with novel gas sensing properties. Sens. Actuators B-Chem. 2008, 130, 405–410.
[10]  Zheng, Q.; Zhu, Y.H.; Xu, J.Q.; Cheng, Z.X.; Li, H.M.; Li, X.X. Fluoroalcohol and fluorinated-phenol derivatives functionalized mesoporous SBA-15 hybrids: high-performance gas sensing toward nerve agent. J. Mater. Chem. 2012, 22, 2263–2270.
[11]  Guillaud, G.; Simon, J.; Germain, J.P. Metallophthalocyanines gas sensors, resistors and field effect transistors. Coord. Chem. Rev. 1998, 178, 1433–1484.
[12]  Li, L.; Tang, Q.; Li, H.; Hu, W.; Yang, X.; Shuai, Z.; Liu, Y.; Zhu, D. Organic thin-film transistors of phthalocyanines. Pure Appl. Chem. 2008, 80, 2231–2240.
[13]  Newton, M.I.; Starke, T.K.H.; Willis, M.R.; McHale, G. NO2 detection at room temperature with copper phthalocyanines thin film devices. Sens. Actuators B-Chem. 2000, 67, 307–311.
[14]  Zhang, Y.; Dalpian, G.M.; Fluegel, B.; Wei, S.H.; Mascarenhas, A.; Huang, X.-Y.; Li, J.; Wang, L.-W. Novel approach to tuning the physical properties of organic-inorganic hybrid semiconductors. Phys. Rev. Lett. 2006, 96, 026405–026409.
[15]  Calestani, D.; Zha, M.Z.; Mosca, R.; Zappettini, A.; Carotta, M.C.; Di Natale, V.; Zanotti, L. Growth of ZnO tetrapods for nanostructure-based gas sensors. Sens. Actuators B-Chem. 2010, 144, 472–478.
[16]  Endres, H.E.; Jander, H.D.; G?ttler, W. A test system for gas sensors. Sens. Actuators B-Chem. 1995, 23, 163–172.
[17]  Mizuguchi, J.; Rihs, G.; Karfunkel, H.R. Solid-state spectra of titanylphthalocyanine as viewed from molecular distortion. J. Phys. Chem. 1995, 99, 16217–16227.
[18]  Chen, Y.-C.; Chang, T.-C.; Li, H.-W.; Chen, S.C.; Lu, J.; Chung, W.F.; Tai, Y.H.; Tseng, T.Y. Bias-induced oxygen adsorption in zinc tin oxide thin film transistors under dynamic stress. Appl. Phys. Lett. 2008, 92, 263109.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133