During the last two decades Red Palm Weevil (RPW, Rynchophorus Ferrugineus) has become one of the most dangerous threats to palm trees in many parts of the World. Its early detection is difficult, since palm trees do not show visual evidence of infection until it is too late for them to recover. For this reason the development of efficient early detection mechanisms is a critical element of RPW pest management systems. One of the early detection mechanisms proposed in the literature is based on acoustic monitoring, as the activity of RPW larvae inside the palm trunk is audible for human operators under acceptable environmental noise levels (rural areas, night periods, etc.). In this work we propose the design of an autonomous bioacoustic sensor that can be installed in every palm tree under study and is able to analyze the captured audio signal during large periods of time. The results of the audio analysis would be reported wirelessly to a control station, to be subsequently processed and conveniently stored. That control station is to be accessible via the Internet. It is programmed to send warning messages when predefined alarm thresholds are reached, thereby allowing supervisors to check on-line the status and evolution of the palm tree orchards. We have developed a bioacoustic sensor prototype and performed an extensive set of experiments to measure its detection capability, achieving average detection rates over 90%.
References
[1]
El-Ezaby, F.A.; Khalifa, O.; EL Assal, A. Integrated Pest Management for the Control of Red Palm Weevil Rhynchphorus Ferrugineus Oliv in the United Arab Emirates, Eastern region, Al Ain. Proceedings of the First International Conference on Date Palm, Al-Ain, UAE, 8–10 March 1998.
[2]
Mukhtar, M.; Rasool, K.G.; Parrella, M.P.; Sheikh, Q.I.; Pain, A.; Lopez-Llorca, L.V.; Aldryhim, Y.N.; Mankin, R.W.; Aldawood, A.S. New initiatives for management of red palm weevil threats to historical arabian date palms. Fla. Entomol. 2011, 94, 733–736.
[3]
El-Mergawy, R.A.A.M.; Al-Ajlan, A.M. Red palm weevil, rhynchophorus ferrugineus (olivier): Economic importance, biology, biogeography and integrated pest management. J. Agric. Sci. Technol. A 2011, 1, 1–23.
[4]
Haff, R.P. Real-time X-ray inspection of wheat for infestation by the granary weevil, sitophilus granarius (L). Trans. ASAE 2003, 47, 531–537.
[5]
Nakash, J.; Osam, Y.; Kehat, M. A suggestion to use dogs for detecting red palm weevil (Rhynchophorus ferrugineus) infestation in date palm in Israel. Phytoparasitica 2000, 28, 153–154.
[6]
Mielle, P.; Marquis, F. An alternative way to improve the sensitivity of electronic olfactometers. Sens. Actuators B Chem. 1999, 58, 526–535.
[7]
Control and Pest Management of Red Palm Weevil (Rhynchophorus Ferrugineus) with Bioacoustic Methods. Available online: http://www.laartech.biz/data/pdf/Control%20of%20Red%20Palm%20Weevil.pdf (accessed on 18 December 2012).
[8]
Acoustic Emission Consulting (AEC). AED-2000 Acoustic Detection System. Available online: http://www.protecusa.biz/termatracaed2000L.html (accessed on 18 December 2012).
[9]
Gutiérrez, A.; Ruiz, V.; Moltó, E.; Tapia, G.; Téllez, M.del M. Development of a bioacoustic sensor for the early detection of red palm weevil (rhynchophorus ferrugineus olivier). Crop Prot. 2010, 29, 671–676.
[10]
Siriwardena, K.A.P.; Fernando, L.C.P.; Nanayakkara, N.; Perera, K.F.G.; Kumara, A.D.N.T.; Nanayakkara, T. Portable acoustic device for detection of coconut palms infested by rynchophorus ferrugineus (coleoptera: curculionidae). Crop Prot. 2010, 29, 25–29.
[11]
Hussein, W.B.; Hussein, M.A.; Becker, T. Detection of the red palm weevil rhynchophorus ferrugineus using its bioacoustics features. Bioacoustics 2010, 19, 177–194.
[12]
Mankin, R.W. Recent developments in the use of acoustic sensors and signal processing tools to target early infestations of red palmd weevil in agricultural environments. Fla. Entomol. 2011, 94, 761–765.
[13]
Fiaboe, K.K.M.; Mankin, R.W.; Roda, A.L.; Kairo, M.T.K.; Johanns, C. Pheromone-food-bait trap and acoustic surveys of rhynchophorus ferrugineus (coleoptera: curculionidae) in curacao. Fla. Entomol. 2011, 94, 766–773.
[14]
Potamitis, I.; Ganchev, T.; Kontodimas, D. On automatic bioacoustic detection of pests: The cases of rhynchophorus ferrugineus and sitophilus oryzae. J. Agric. Sci. Technol. A 2011, 1, 1–23.
[15]
Pinhas, J.; Soroker, V.; Hetzroni, A.; Mizrach, A.; Teicher, M.; Goldberger, J. Automatic acoustic detection of the red palm weevil. Comput. Electron. Agric. 2008, 63, 131–139.
[16]
NXP Semiconductors. JN5148 System-On-Chip Reference Datasheet. Available online: http://www.nxp.com/products/rf/wireless_microcontrollers/JN5148.html (accessed on 18 December 2012).
[17]
Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001.
[18]
Oppenheim, A.V.; Schafer, R.W.; Buck, J.R. Discrete-Time Signal Processing, 3rd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1989.
[19]
Von Laar, B. Sound of Red Palm Weevil Rhynchophorus Ferrugineus and other Examples of Wood and Grain Destroying Insects; Small Collection Edition: Klein Goernow, Germany, 2008.
[20]
Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000.