This paper reviews the state of the art of artificial tactile sensing, with a particular focus on bio-hybrid and fully-biological approaches. To this aim, the study of physiology of the human sense of touch and of the coding mechanisms of tactile information is a significant starting point, which is briefly explored in this review. Then, the progress towards the development of an artificial sense of touch are investigated. Artificial tactile sensing is analysed with respect to the possible approaches to fabricate the outer interface layer: synthetic skin versus bio-artificial skin. With particular respect to the synthetic skin approach, a brief overview is provided on various technologies and transduction principles that can be integrated beneath the skin layer. Then, the main focus moves to approaches characterized by the use of bio-artificial skin as an outer layer of the artificial sensory system. Within this design solution for the skin, bio-hybrid and fully-biological tactile sensing systems are thoroughly presented: while significant results have been reported for the development of tissue engineered skins, the development of mechanotransduction units and their integration is a recent trend that is still lagging behind, therefore requiring research efforts and investments. In the last part of the paper, application domains and perspectives of the reviewed tactile sensing technologies are discussed.
References
[1]
Scheibert, J.; Leurent, S.; Prevost, A.; Debrégeas, G. The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 2009, 323, 1503–1506.
[2]
Candelier, R.; Prevost, A.; Debrégeas, G. The role of exploratory conditions in bio-inspired tactile sensing of single topogical features. Sensors 2011, 11, 7934–7953.
[3]
Vasarhelyi, G.; Adam, M.; Vazsonyi, E.; Barsony, I.; Ducso, C. Effects of the elastic cover on tactile sensor arrays. Sens. Actuators A Phys. 2006, 132, 245–251.
[4]
Oddo, C.M.; Beccai, L.; Wessberg, J.; Wasling, H.B.; Mattioli, F.; Carrozza, M.C. Roughness encoding in human and biomimetic artificial touch: Spatiotemporal frequency modulation and structural anisotropy of fingerprints. Sensors 2011, 11, 5596–5615.
[5]
Johansson, R.S.; Flanagan, J.R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 2009, 10, 345–359.
[6]
Bashir, R. BioMEMS: State-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 2004, 56, 1565–1586.
[7]
Cabibihan, J.J.; Carrozza, M.C.; Dario, P.; Pattofatto, S.; Jomaa, M.; Benallal, A. The Uncanny Valley and the search for human skin-like materials for a prosthetic fingertip. Proceedings of 6th IEEE -RAS International Conference on Humanoid Robots, Genova, Italy, 4–6 Decmber 2006; pp. 474–477.
Shimoga, K.B.; Goldenberg, A.A. Soft materials for robotic fingers. Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France, 12– 14 May 1992; pp. 1300–1305.
[11]
Klatzky, R.L.; Lederman, S.J. Touch. In Handbook of psychology; Healy, A.F., Proctor, R.W., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; Volume 4, pp. 147–176.
[12]
Dahiya, R.S.; Metta, G.; Valle, M.; Sandini, G. Tactile sensing—From humans to humanoids. IEEE T. Robot. 2010, 26, 1–20.
[13]
Loomis, J.M.; Lederman, S.J. Tactual perception. In Handbook of Perception and Human Performance; Boff, K., Kaufman, L., Thomas, J., Eds.; Wiley-Interscience: Hoboken, NJ, USA, 1986; pp. 1–41.
[14]
Graziano, M.S.A.; Botvinick, M.M. How the brain represents the body: Insights from neurophysiology and psychology. Common Mech. Percept. Action Atten. Perform. XIX 2002, 19, 136–157.
[15]
Edin, B.B.; Johansson, N. Skin strain patterns provide kineasthetic information to the human central nervous system. J. Phys. 1955, 487, 243–251.
[16]
Dargahi, S.; Najarian, S. Human tactile perception as a standard for artificial tactile sensing—A review. Int. J. Med. Robot. Comput. Assist. Surg. 2004, 1, 23–35.
[17]
Maeno, T.; Kobayashi, K.; Yamazaki, N. Relationship between the structure of the human finger tissue and the location of tactile receptors. JSMEB 1998, 41, 94–100.
[18]
Taylor, C.L.; Schwarz, R.J. The anatomy and mechanics of the human hand. Artif. Limbs. 1955, 2, 22–35.
[19]
Johansson, R.S.; Vallbo, A.B. Tactile sensibility in the human hand: Relative and absolute densities of four types of mechanoreceptives unitsin glabrous skin. J. Physiol. 1979, 286, 283–300.
[20]
Vallbo, A.B.; Johansson, R.S. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum. Neurobiol. 1984, 3, 3–14.
[21]
Johansson, N. Skin mechanoreceptors in the human hand: Receptive field characteristics. Sens. Funct. Skin 1976, 159–170.
[22]
Johnson, K.O. The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 2001, 11, 455–461.
Blake, D.T.; Hsiao, S.S.; Johnson, K.O. Neural coding mechanisms in tactile pattern recognition: The relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. J. Neurosci. 1997, 17, 7480–7489.
[25]
Bell, J.; Bolanowski, S.; Holmes, M.H. The structure and function of Pacinian corpuscles: A review. Prog. Neurobiol. 1994, 42, 79–128.
[26]
Loewenstein, W.R.; Skalak, R. Mechanical transmission in a pacinian corpuscle. An analysis and a theory. J. Physiol. 1966, 182, 346–378.
[27]
Bensmaia, S.J.; Hollins, M. Pacinian representation of fine surface texture. Percept. Psychophys 2005, 67, 842–854.
[28]
Bensmaia, S.J.; Hollins, M.; Yau, J. Vibrotactile frequency and intensity information in the Pacinian system: A psychophysical model. Percept. Psychophys 2005, 67, 828–841.
[29]
Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; Siegelbaum, S.; Hudspeth, A.J. The somatosensory system: Receptors and central pathways. In Principles of Neural Science, 5th ed.; McGraw-Hill Professional: New York, NY, USA, 2012; pp. 475–497.
[30]
Birznieks, I.; Jenmalm, P.; Goodwin, A.W.; Johansson, R.S. Encoding of direction of fingertip forces by human tactile afferents. J. Neurosci. 2001, 21, 8222–8237.
[31]
Johnson, K.O.; Yoshioka, T. Neural mechanisms of tactile form and texture perception. In The Somatosensory System: Deciphering the Brain's Own Body Image; Nelson, R.J., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2001; pp. 73–101.
[32]
Lederman, S.J. Tactual roughness perception: Spatial and temporal determinants. Can. J. Psychol. 1983, 37, 498–511.
[33]
Yoshioka, T.; Zhou, J. Factors involved in tactile texture perception through probes. Adv. Robot 2009, 23, 747–766.
[34]
Lederman, S.J.; Pawluk, T. Lessons from the study of biological touch for robotic tactile sensing. Adv. Tactile Sens. Robot 1992, 5, 151–192.
Lee, M.H.; Nicholls, H.R. Tactile sensing for mechatronics—A state of the art survey. Mechatronics 1999, 9, 1–31.
[37]
Maheshwari, V.; Saraf, R. Tactile devices to sense touch on a par with a human finger. Angew. Chem. Int. Ed. 2008, 47, 7808–7826.
[38]
Yousef, H.; Boukallel, M.; Althoefer, K. Tactile sensing for dexterous in-hand manipulation in robotics—A review. Sens. Actuators A Phys. 2011, 167, 171–187.
[39]
Tiwana, M.I.; Redmond, S.J.; Lovell, N.H. A review of tactile sensing technologies with applications in biomedical engineering. Sens. Actuators A Phys. 2012, 179, 17–31.
[40]
Cheng, M.Y.; Huang, X.H.; Ma, C.W.; Yang, Y.J. A flexible capacitive tactile sensing array with floating electrodes. J. Micromech. Microeng. 2009, 19, 115001.
[41]
Muhammad, H.B.; Oddo, C.M.; Beccai, L.; Recchiuto, C.; Anthony, C.J.; Adams, M.J.; Carrozza, M.C.; Hukins, D.W.L.; Ward, M.C.L. Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger. Sens. Actuators A Phys. 2011, 165, 221–229.
Medler, A.; Patel, C.; Butcher, J. A capacitive pressure sensor fabricated by a combination of SIMOX (SOI) substrates and novel etching techniques. J. Commun. 1996, 47, 6–8.
Renard, S.; Pisella, C.; Collet, J.; Perruchot, F.; Kergueris, C.; Destrez, P.; Rey, P.; Delorme, N.; Dallard, E. Miniature pressure acquisition microsystem for wireless in vivo measurements. Proceedings of the IEEE -EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, Lyon, France, 12– 14 October 2002; pp. 175–179.
[46]
Atkinson, G.M.; Pearson, R.E.; Ounaies, Z.; Park, C.; Harrison, J.S.; Midkiff, J.A. Piezoelectric polyimide tactile sensors. Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium, Boise, ID, USA, 30 June– 2 July 2003; pp. 308–311.
[47]
Cheng-Hsin, C.; Wen-Bin, D.; Wen-Bin, L. Flexible piezoelectric tactile sensor with structural electrodes array for shape recognition system. Proceedings of ICST 2008 3rd International Conference on Sensing Technology, Tainan, Taiwan, 30 November–3 December 2008; pp. 504–507.
[48]
Dahiya, R.S.; Metta, G.; Valle, M. Development of fingertip tactile sensing chips for humanoid robots. Proceedings of IEEE International Conference on Mechatronics ICM 2009, Malaga, Spain, 14– 17 April 2009; pp. 1–6.
[49]
Krishna, G.M.; Rajanna, K. Tactile sensor based on piezoelectric resonance. IEEE Sens. J. 2004, 4, 691–697.
[50]
Li, C.Y.; Wu, P.M.; Lee, S.; Gorton, A.; Schulz, M.J.; Ahn, C.H. Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J. Microelectromech. Syst. 2008, 17, 334–341.
[51]
Hosoda, K.; Tada, Y.; Asada, M. Anthropomorphic robotic soft fingertip with randomly distributed receptors. Robot. Auton. Syst. 2006, 54, 104–109.
[52]
Ando, S. Ultrasonic Emission Tactile Sensing. IEEE Control Syst. 1995, 15, 61–69.
[53]
Beccai, L.; Roccella, S.; Arena, A.; Valvo, F.; Valdastri, P.; Menciassi, A.; Carrozza, M.C.; Dario, P. Design and fabrication of a hybrid silicon three-axial force sensor for biomechanical applications. Sens. Actuators A Phys. 2005, 120, 370–382.
[54]
Wang, L.; Beebe, D.J. A silicon-based shear force sensor: Development and characterization. Sens. Actuators A Phys. 2000, 84, 33–44.
[55]
Mei, T.; Li, W.J.; Ge, Y.; Chen, Y.; Ni, L.; Chan, M.H. An integrated MEMS three-dimensional tactile sensor with large force range. Sens. Actuators A Phys. 2000, 80, 155–162.
[56]
Tibrewala, A.; Phataralaoha, A.; Buttgenbach, S. Development, fabrication and characterization of a 3D tactile sensor. J. Micromech. Microeng 2009, 19, 125005.
[57]
Lee, J.C.; Lee, D.W. Flexible and tactile sensor based on a photosensitive polymer. Microelectron. Eng. 2010, 87, 1400–1403.
[58]
Hwang, E.S.; Seo, J.H.; Kim, Y.J. A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics. J. Microelectromech. Syst. 2007, 16, 556–563.
[59]
Kwon, H.J.; Choi, W.C. Design and fabrication of a flexible three-axial tactile sensor array based on polyimide micromachining. Microsyst. Technol. 2010, 16, 2029–2035.
[60]
Tanaka, M.; Iijima, T.; Tanahashi, Y.; Chonan, S. Development of a 3D tactile sensor. J. Mater. Process. Technol. 2007, 181, 286–290.
[61]
Hasegawa, Y.; Sasaki, H.; Shikida, M.; Sato, K.; Itoigawa, K. Magnetic actuation of a micro-diaphragm structure for an active tactile sensor. Proceedings of the 2004 International Symposium on Micro-Nanomechatronics and Human Science, Nagoya, Japan, 31 October– 3 November 2004; pp. 99–104.
[62]
Takenawa, S. A. Magnetic type tactile sensor using a two-dimensional array of inductors. Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12– 17 May 2009; pp. 3295–3300.
[63]
Begej, S. Planar and finger-shaped optical tactile sensors for robotic applications. IEEE Trans. Robot. Autom. 1988, 4, 472–484.
[64]
Persichetti, A.; Vecchi, F.; Carrozza, M.C. Optoelectronic-based flexible contact sensor for prosthetic hand application. Proceedings of IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13– 15 June 2007; pp. 415–420.
[65]
Ahmadi, R.; Packirisamy, M.; Dargahi, J.; Cecere, R. Discretely loaded beam-type optical fiber tactile sensor for tissue manipulation and palpation in minimally invasive robotic surgery. IEEE Sens. J. 2012, 12, 22–32.
[66]
Maheshwari, V. High-resolution thin-film device to sense texture by touch. Science 2006, 312, 1501–1504.
[67]
Vasarhelyi, G.; Fodor, B.; Roska, T. Tactile sensing-processing: interface-cover geometry and the inverse-elastic problem. Sens. Actuators A Phys. 2007, 140, 8–18.
[68]
Roy, D.; Wettels, N.; Loeb, G.E. Elastomeric skin selection for a fluid-filled artificial fingertip. J. Appl. Polym. Sci. 2013, 127, 4624–4633.
[69]
Park, T.H.; Shuler, M.L. Integration of cell-culture and microfabrication technology. Biotechnol. Prog. 2003, 19, 243–253.
[70]
Ni, M.; Tong, W.H.; Choudhury, D.; Rahim, N.A.A.; Iliescu, C.; Yu, H. Cell culture on MEMS platforms: a review. Int. J. Mol. Sci. 2009, 10, 5411–5441.
[71]
Cheneler, D.; Ward, M.C.L.; Anthony, C.J. Bio-hybrid tactile sensor for the study of the role of mechanoreceptors in human tactile perception. Microelectron. Eng. 2012, 97, 297–300.
[72]
Cheneler, D.; Buselli, E.; Oddo, C.M.; Kaklamani, G.; Beccai, L.; Carrozza, M.C.; Grover, L.M.; Anthony, C.J.; Ward, M.C.L.; Adams, M.J. Bio-hybrid tactile sensor and experimental set-up for investigating and mimicking the human sense of touch. Proceedings of Workshop on Advances in Tactile Sensing and Touch based Human-Robot Interaction at the 7th ACM/IEEE International Conference on Human-Robot Interaction HRI, Boston, MA, USA, 5– 8 March 2012; pp. 1–3.
[73]
Oddo, C.M.; Beccai, L.; Vitiello, N.; Wasling, H.B.; Wessberg, J.; Carrozza, M.C. A mechatronic platform for human touch studies. Mechatronics 2011, 21, 604–613.
[74]
Muhammad, H.B.; Hunt, N.C.; Shelton, R.M.; Grover, L.M.; Ward, M.C.L.; Oddo, C.M.; Recchiuto, C.T.; Beccai, L. Incorporation of novel MEMS tactile sensors into tissue engineered skin. Proceedings of 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), Chengdu, China, 18–20 June 2010; pp. 1–4.
[75]
Muhammad, H.B.; Oddo, C.M.; Beccai, L.; Adams, M.J.; Carrozza, M.; Hukins, D.W.; Ward, M.C. Development of a biomimetic MEMS based capacitive tactile sensor. Procedia Chem. 2009, 1, 124–127.
[76]
Buselli, E.; Smith, A.M.; Grover, L.M.; Levi, A.; Allman, R.; Mattoli, V.; Menciassi, A.; Beccai, L. Development and characterization of a bio-hybrid skin-like stretchable electrode. Microelectron. Eng. 2011, 88, 1676–1680.
[77]
Tran, R.; Dey, J.; Gyawali, D.; Zhang, Y.; Yang, J. Biodegradable elastomeric polymers and MEMS in tissue engineering. In Biomaterials for MEMS; Chiao, M., Chiao, C., Eds.; Pan Stanford Publishing Pte Ltd.: Singapore, Singapore, 2010. Chapter 8; pp. 1–32.
[78]
Grayson, A.M.C.; Shawgo, R.S.; Johnson, A.M.; Flynn, N.T.; Li, Y.; Cima, M.J.; Langer, R. A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE 2004, 92, 6–21.
[79]
Bello, Y.M.; Falabella, A.F.; Eaglstein, W.H. Tissue-engineered skin—Current status in wound healing. Am. J. Clin. Dermatol. 2001, 2, 305–313.
[80]
Altomare, L.; Bertoldi, S.; Catto, V.; Draghi, L.; Farè, S.; Munarin, F.; Petrini, P.; Tanzi, M.C. Micro and nano structured polymeric scaffolds for tissue engineering. Proceedings of the BioMed@POLIMI: 20 yrs and beyond, Milan, Italy; 2011; pp. 1–4.
[81]
Raimondi, M.T.; Falcone, L.; Colombo, M.; Remuzzi, A.; Marinoni, E.; Marazzi, M.; Rapisarda, V.; Pietrabissa, R. A comparative evaluation of chondrocyte/scaffold constructs for cartilage tissue engineering. J. Appl. Biomater. Biomech. 2004, 2, 55–64.
[82]
Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 2012, 336, 1124–1128.
[83]
Calvert, P. Hydrogels for soft machines. Adv. Mater. 2009, 21, 743–756.
[84]
Hunt, N.C.; Grover, L.M. Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol. Lett. 2010, 32, 733–742.
[85]
Hunt, N.C.; Shelton, R.M.; Grover, L. An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co-culture. Biotechnol. J. 2009, 4, 730–737.
[86]
Choi, Y.S.; Hong, S.R.; Lee, Y.M.; Song, K.W.; Park, M.H.; Nam, Y.S. Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials 1999, 20, 409–417.
[87]
Taniguchi, A. Live cell-based sensor cells. Biomaterials 2010, 31, 5911–5915.
[88]
Antonik, M.D.; D'Costa, N.P.; Hoh, J.H. A biosensor based an micromechanical interrogation of living cells. IEEE Eng. Med. Biol. 1997, 16, 66–72.
[89]
Young, C.-D.; Wu, J.-R.; Tsou, T.-L. Fabrication and characteristics of polyHEMA artificial skin with improved tensile properties. J. Membr. Sci. 1998, 146, 83–93.
[90]
Choi, Y.S.; Hong, S.R.; Lee, Y.M.; Song, K.W.; Park, M.H.; Nam, Y.S. Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. J. Biomed. Mater. 1999, 48, 631–639.
[91]
Choi, Y.S.; Lee, S.B.; Hong, S.R.; Lee, Y.M.; Song, K.W.; Park, M.H. Studies on gelatin-based sponges: Part III: A comparative study of cross-linked gelatin/alginate, gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as a wound dressing in full-thickness skin defect of rat. J. Mater. Sci. Mater. Med. 2001, 12, 67–73.
[92]
Hong, S.R.; Lee, S.J.; Shim, J.W.; Choi, Y.S.; Lee, Y.M.; Song, K.W.; Park, M.H.; Nam, Y.S.; Lee, S.I. Study on gelatin-containing artificial skin IV: A comparative study on the effect of antibiotic and EGF on cell proliferation during epidermal healing. Biomaterials 2001, 22, 2777–2783.
[93]
Lee, S.B.; Kim, Y.H.; Chong, M.S.; Hong, S.H.; Lee, Y.M. Study of gelatin-containing artificial skin V: Fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials 2005, 26, 1961–1968.
[94]
Griscom, L.; Chateau, Y.; Pennec, J.-P.; Misery, L.; Le Pioufle, B. Co-culture of cells in PDMS microsystem for sensitized artificial skin. Proceedings of the 3rd Annual International IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Kahuku, HI, USA, 12– 15 May 2005; pp. 184–187.
[95]
Zacchi, V.; Soranzo, C.; Cortivo, R.; Radice, M.; Brun, P.; Abatangelo, G. In vitro engineering of human skin-like tissue. J. Biomed. Mater. 1998, 40, 187–194.
[96]
Lee, S.B.; Jeon, H.W.; Lee, Y.W.; Lee, Y.M.; Song, K.W.; Park, M.H.; Nam, Y.S.; Ahn, H.C. Bio-artificial skin composed of gelatin and (1→3), (1→6)-β-glucan. Biomaterials 2003, 24, 2503–2511.
[97]
Mao, J.; Zaho, L.; de Yao, K.; Shang, Q.; Yang, G.; Cao, Y. Study on novel chitosan-gelatin artificial skin in vitro. J. Biomed. Mater. 2003, 64A, 301–308.
[98]
Yang, E.K.; Seo, Y.K.; Youn, H.H.; Lee, D.H.; Park, S.N.; Park, J.K. Tissue engineered artificial skin composed of dermis and epidermis. Artif. Organs 2001, 24, 7–17.
[99]
Sabolinski, M.L.; Alvarez, O.; Auletta, M.; Mulder, G.; Parenteau, N.L. Cultured skin as a ‘smart material’ for healing wounds: Experience in venous ulcers. Biomaterials 1996, 17, 311–320.
[100]
Fradette, J.; Larouche, D.; Fugere, C.; Guignard, R.; Beauparlant, A.; Couture, V.; Caouette-Laberge, L.; Roy, A.; Germain, L. Normal human Merkel cells are present in epidermal cell populations isolated and cultured from glabrous and hairy skin sites. J. Invest. Dermatol. 2003, 120, 313–317.
[101]
Kim, D.-K.; Holbrook, K.A. The nerve-dependency of Merkel cell proliferation in cultured human fetal glabrous skin. Yonsei Med. J. 2001, 42, 311–315.
[102]
Nagase, K.; Aoki, S.; Uchihashi, K.; Misago, N.; Shimohira-Yamasaki, M.; Toda, S.; Narisawa, Y. An organotypic culture system of Merkel cells using isolated epidermal sheets. Br. J. Dermatol. 2009, 161, 1239–1247.
[103]
Shimohira-Yamasaki, M.; Toda, S.; Narisawa, Y.; Sugihara, H. Merkel cell-nerve cell interaction undergoes formation of a synapse-like structure in a primary culture. Cell Struct. Funct. 2006, 31, 39–45.
[104]
Shin, M.; Matsuda, K.; Ishii, O.; Terai, H.; Kaazempur-Mofrad, M.; Borenstein, J.; Detmar, M.; Vacanti, J.P. Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed. Microdevices 2004, 6, 269–278.
[105]
Perets, A.; Baruch, F.; Weisbuch, F.; Shoshany, G.; Neufeld, G.; Cohen, S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J. Biomed. Mater. Res. A. 2003, 65, 489–497.
[106]
Dario, P. Guest editorial special issue on biorobotics. IEEE Trans. Robot. 2008, 24, 3–4.
[107]
Micera, S.; Carrozza, M.C.; Beccai, L.; Vecchi, F.; Dario, P. Hybrid bionic systems for the replacement of hand function. Proc. IEEE 2006, 24, 11.
[108]
Dhillon, G.S.; Horch, K.W. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neur. Syst. Rehabil. 2005, 13, 468–472.
[109]
Micera, S.; Citi, L.; Rigosa, J.; Carpaneto, J.; Raspopovic, S.; di Pino, G.; Rossini, L.; Yoshida, K.; Denaro, L.; Dario, P.; et al. Decoding Information From Neural Signals Recorded Using Intraneural Electrodes: Toward the Development of a Neurocontrolled Hand Prosthesis. Proc. IEEE 2010, 98, 407–417.
[110]
Oddo, C.M.; Controzzi, M.; Beccai, L.; Cipriani, C.; Carrozza, M.C. Roughness encoding for discrimination of surfaces in artificial active-touch. IEEE Trans. Robot 2011, 27, 522–533.
[111]
Pape, L.; Oddo, C.M.; Controzzi, M.; Cipriani, C.; F?rster, A.; Carrozza, M.C.; Schmidhuber, J. Learning tactile skills through curious exploration. Front. Neurorobot. 2012, 6, 1–16.
[112]
Shimazaki, J.-O.; Wada, K.-I.; Taniguchi, A. Live cell-based sensor devices. Open Biotechnol. J. 2007, 107, 31–33.
Spigler, G.; Oddo, C.M.; Carrozza, M.C. Soft-neuromorphic artificial touch for applications in neuro-robotics. Proceedings of 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Rome, Italy, 24– 27 June 2012; pp. 1913–1918.
[115]
Coutinho, D.; Costa, P.; Neves, N.; Gomes, M.E.; Reis, R.L. Micro- and Nanotechnology. In Tissue Engineering; Pallua, N., Suscheck, C.V., Eds.; Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2011; pp. 3–29.