全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A Hilbert Transform-Based Smart Sensor for Detection, Classification, and Quantification of Power Quality Disturbances

DOI: 10.3390/s130505507

Keywords: Hilbert transform, power quality disturbances, power quality indices, instantaneous exponential time constant, FPGA, feed forward neural network, smart sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Power quality disturbance (PQD) monitoring has become an important issue due to the growing number of disturbing loads connected to the power line and to the susceptibility of certain loads to their presence. In any real power system, there are multiple sources of several disturbances which can have different magnitudes and appear at different times. In order to avoid equipment damage and estimate the damage severity, they have to be detected, classified, and quantified. In this work, a smart sensor for detection, classification, and quantification of PQD is proposed. First, the Hilbert transform (HT) is used as detection technique; then, the classification of the envelope of a PQD obtained through HT is carried out by a feed forward neural network (FFNN). Finally, the root mean square voltage ( Vrms), peak voltage ( Vpeak), crest factor ( CF), and total harmonic distortion ( THD) indices calculated through HT and Parseval’s theorem as well as an instantaneous exponential time constant quantify the PQD according to the disturbance presented. The aforementioned methodology is processed online using digital hardware signal processing based on field programmable gate array (FPGA). Besides, the proposed smart sensor performance is validated and tested through synthetic signals and under real operating conditions, respectively.

References

[1]  Caramia, P.; Carpinelli, G.; Verde, P. Power Quality Indices in Liberalized Markets, 1st ed. ed.; Wiley: West Sussex, United Kingdom, 2009.
[2]  Granados-Lieberman, D.; Romero-Troncoso, R.J.; Osornio-Rios, R.A.; Garcia-Perez, A.; Cabal-Yepez, E. Techniques and methodologies for power quality analysis and disturbances classification in power systems: A review. IET Gen. Trans. Distrib. 2011, 5, 519–529.
[3]  Coppola, L.; Liu, Q.; Buso, S.; Boroyevich, D.; Bell, A. Wavelet transform as an alternative to the short-time Fourier transform for the study of conducted noise in power electronics. IEEE Trans. Ind. Electron. 2008, 55, 880–887.
[4]  Barros, J.; Apraiz, M.; Diego, R.I. A virtual measurement instrument for electrical power quality analysis using wavelets. Measurement 2009, 42, 298–307.
[5]  Zwe-Lee, G. Wavelet-based neural network for power disturbance recognition and classification. IEEE Trans. Power Del. 2004, 19, 1560–1568.
[6]  Decanini, J.G.M.S.; Tonelli-Neto, M.S.; Malange, F.C.V.; Minussi, C.R. Detection and classification of voltage disturbances using a fuzzy-ARTMAP-wavelet network. Electr. Power Syst. Res. 2011, 81, 2057–2065.
[7]  Bhende, C.N.; Mishra, S.; Panigrahi, B.K. Detection and classification of power quality disturbances using S-transform and modular neural network. Electr. Power Syst. Res. 2008, 78, 122–128.
[8]  Nguyen, T.; Liao, Y. Power quality disturbance classification utilizing S-transform and binary feature matrix method. Electr. Power Syst. Res. 2009, 79, 569–575.
[9]  Uyar, M.; Yildirim, S.; Gencoglu, M.T. An expert system based on S-transform and neural network for automatic classification of power quality disturbances. Exp. Syst. Appl. 2009, 36, 5962–5975.
[10]  Abdelsalam, A.A.; Eldesouky, A.A.; Sallam, A.A. Characterization of power quality disturbances using hybrid technique of linear Kalman filter and fuzzy-expert system. Electr. Power Syst. Res. 2012, 83, 41–50.
[11]  Cho, S.H.; Jang, G.; Kwon, S.H. Time-frequency analysis of power-quality disturbances via the Gabor–Wigner transform. IEEE Trans. Ind. Electron. 2010, 25, 212–220.
[12]  Jayasree, T.; Devaraj, D.; Sukanesh, R. Power quality disturbance classification using Hilbert transform and RBF networks. Neurocomputing 2010, 73, 1451–1456.
[13]  Ozgonenel, O.; Yalcin, T.; Guney, I. A new classification for power quality events in distribution systems. Electr. Power Syst. Res. 2013, 95, 192–199.
[14]  Radil, T.; Ramos, P.M.; Janeiro, F.M.; Serra, A.C. PQ monitoring system for real-time detection and classification of disturbances in a single-phase power system. IEEE Trans. Intrum. Meas. 2008, 57, 1725–1733.
[15]  Mindykowski, J.; Tarasiuk, T. Development of DSP-based instrumentation for power quality monitoring on ships. Measurement 2010, 43, 1012–1020.
[16]  Rivera, J.; Herrera, G.; Chacon, M.; Acosta, P.; Carrillo, M. Improved progressive polynomial algorithm for self-adjustment and optimal response in intelligent sensors. Sensors 2008, 8, 7410–7427.
[17]  Frank, R. Understanding Smart Sensors; Artech House: Norwood, MA, USA, 2000.
[18]  Samir, M. Further structural intelligence for sensors cluster technology in manufacturing. Sensors 2006, 6, 557–577.
[19]  Granados-Lieberman, D.; Romero-Troncoso, R.J.; Cabal-Yepez, E.; Osornio-Rios, R.A.; Franco-Gasca, L.A. A real-time smart sensor for high-resolution frequency estimation in power systems. Sensors 2009, 9, 7412–7429.
[20]  Humin, L.; Weilin, L.; Min, L.; Monti, A.; Ponci, F. Design of smart MVDC power grid protection. IEEE Trans. Intrum. Meas. 2011, 60, 3035–3046.
[21]  Lim, Y.; Kim, H.M.; Kang., S. A design of wireless sensor networks for a power quality monitoring system. Sensors 2010, 10, 9712–9725.
[22]  Lim, Y.; Kim, H.M.; Kang., S. A reliable data delivery mechanism for grid power quality using neural networks in wireless sensor networks. Sensors 2010, 10, 9349–9358.
[23]  Buticchi, G.; Lorenzani, E. Detection method of the DC bias in distributions power transformers. IEEE Trans. Ind. Electron. 2013, 60, 3539–3549.
[24]  IEEE Recommended Practices for Monitoring Electric Power Quality; IEEE Std. 1159: New York, NY, USA, 2009.
[25]  Voltage Characteristics of Electricity Supplied by Public Distribution Systems; CENELEC European Committee for Electrotechical Standard-ization Standard EN50160; Brussels, Belgium, 2002.
[26]  Abdel-Galil, T.K.; Sadaany, E.L. On line tracking of voltage flicker utilizing energy operator and hilbert transform. IEEE Trans. Power Del. 2004, 19, 861–867.
[27]  Cabal-Yepez, E.; Valtierra-Rodriguez, M.; Romero-Troncoso, R.J.; Garcia-Perez, A.; Osornio-Rios, R.A.; Miranda-Vidales, H.; Alvares-Salas, R. FPGA-based entropy neural processor for online detection of multiple combined faults on induction motors. Mech. Syst. Signal Process 2012, 30, 123–130.
[28]  Texas Instruments Data Sheet ISO124 Series; Burr-Brown Division, Texas Instruments Inc.: Dallas, TX, USA, 2005.
[29]  Texas Instruments Data Sheet DCV01 Series; Burr-Brown Division, Texas Instruments Inc.: Dallas, TX, USA, 2000.
[30]  Texas Instruments Data Sheet ADS8341; Burr-Brown Division, Texas Instruments Inc.: Dallas, TX, USA, 1998.
[31]  Rosado, L.; Janeiro, F.M.; Ramos, P.M.; Piedade, M. Currents Testing Defect Characterization based on Non-Linear Regressions and Artificial Neural Networks. Proceedings of 2012 IEEE International Instrumentation and Measurement Technology Conference (I2TMC), Graz, Austria, 13– 16 May 2012; pp. 2419–2424.
[32]  Rangel-Magdaleno, J.J.; Romero-Troncoso, R.J.; Osornio-Rios, R.A.; Cabal-Yepez, E. Novel oversampling technique for improving signal-to-quantization noise ratio on accelerometer-based smart jerk sensors in CNC applications. Sensors 2009, 9, 3767–3789.
[33]  Cabal-Yepez, E.; Saucedo-Gallaga, R.; Garcia-Ramirez, A.G.; Fernandez-Jaramillo, A.A.; Pena-Anaya, A.A.; Valtierra-Rodriguez, M. FPGA-Based Online Detection of Multiple-Combined Faults Through Information Entropy and Neural Networks. Proceedings of 2010 International Conference on ReConFigurable Computing and FPGAs (ReConFig 2010), Quintana Roo, Mexico, 13– 15 December 2010; pp. 244–249.
[34]  Xilinx Corporation Data Sheet Spartan 3E FPGA Family; Xilinx Inc.: San Jose, CA, USA, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133