全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

An Infrastructureless Approach to Estimate Vehicular Density in Urban Environments

DOI: 10.3390/s130202399

Keywords: vehicular networks, vehicular density estimation, warning message dissemination, VANETs

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Vehicular Networks, communication success usually depends on the density of vehicles, since a higher density allows having shorter and more reliable wireless links. Thus, knowing the density of vehicles in a vehicular communications environment is important, as better opportunities for wireless communication can show up. However, vehicle density is highly variable in time and space. This paper deals with the importance of predicting the density of vehicles in vehicular environments to take decisions for enhancing the dissemination of warning messages between vehicles. We propose a novel mechanism to estimate the vehicular density in urban environments. Our mechanism uses as input parameters the number of beacons received per vehicle, and the topological characteristics of the environment where the vehicles are located. Simulation results indicate that, unlike previous proposals solely based on the number of beacons received, our approach is able to accurately estimate the vehicular density, and therefore it could support more efficient dissemination protocols for vehicular environments, as well as improve previously proposed schemes.

References

[1]  Martinez, F.J.; Cano, J.C.; Calafate, C.T.; Manzoni, P.; Barrios, J.M. Assessing the Feasibility of a VANET driver warning system. eding of ACM Workshop on Performance Monitoring, Measurement and Evaluation of Heterogeneous Wireless and Wired Networks, Tenerife, Spain, October 2009; pp. 39–45.
[2]  Soldo, F.; Lo Cigno, R.; Gerla, M. Cooperative Synchronous Broadcasting in Infrastructure-to-Vehicles Networks. eding of Fifth Annual Conference on Wireless on Demand Network Systems and Services (WONS), Garmisch-Partenkirchen, Germany, January 2008; pp. 125–132.
[3]  Santa, J.; Toledo-Moreo, R.; Zamora-Izquierdo, M.A.; Ubeda, B.; Gomez-Skarmeta, A.F. An analysis of communication and navigation issues in collision avoidance support systems. Transp. Res. Part C. Emerg Technol. 2010, 18, 351–366.
[4]  Rahim, A.; Khan, Z.; Muhaya, F.T.B.; Sher, M.; Kim, T.H. Sensor based framework for secure multimedia communication in VANET. Sensors 2010, 10, 10146–10154.
[5]  Galaviz-Mosqueda, G.A.; Aquino-Santos, R.; Villarreal-Reyes, S.; Rivera-Rodriguez, R.; Villase?or-Gonzalez, L.; Edwards, A. Reliable freestanding position-based routing in highway scenarios. Sensors 2012, 12, 14262–14291.
[6]  Losilla, F.; Garcia-Sanchez, A.J.; Garcia-Sanchez, F.; Garcia-Haro, J.; Haas, Z.J. A comprehensive approach to WSN-based ITS applications: A survey. Sensors 2011, 11, 10220–10265.
[7]  Malandrino, F.; Casetti, C.; Chiasserini, C.F.; Fiore, M. Optimal content downloading in vehicular networks. IEEE Trans. Mob. Comput. 2012, 99, 1.
[8]  Pi?ol, P.; López, O.; Martínez, M.; Oliver, J.; Malumbres, M. P Modeling Video Streaming over VANETs. edings of the 7th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks, Paphos, Cyprus, October 2012; pp. 7–14.
[9]  Maslekar, N.; Boussedjra, M.; Mouzna, J.; Labiod, H. A Stable Clustering Algorithm for Efficiency Applications in VANETs. edings of 7th International Wireless Communications and Mobile Computing Conference (IWCMC), Istanbul, Turkey, July 2011; pp. 1188–1193.
[10]  Shirani, R.; Hendessi, F.; Gulliver, T. Store-Carry-Forward Message Dissemination in Vehicular Ad-Hoc Networks with Local Density Estimation. Proceedings of IEEE 70th Vehicular Technology Conference Fall (VTC 2009-Fall), Anchorage, AK, USA, September 2009; pp. 1–6.
[11]  Martinez, F.J.; Toh, C.K.; Cano, J.C.; Calafate, C.T.; Manzoni, P. Determining the representative factors affecting warning message dissemination in VANETs. Wirel. Pers. Commun. 2011, 67, 295–314.
[12]  Fogue, M.; Garrido, P.; Martinez, F.J.; Cano, J.C.; Calafate, C.T.; Manzoni, P. Analysis of the Most Representative Factors Affecting Warning Message Dissemination in VANETs under Real Roadmaps. edings of 19th Annual Meeting of the IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), Singapore, July 2011; pp. 197–204.
[13]  Tan, E.; Chen, J. Vehicular Traffic Density Estimation via Statistical Methods with Automated State Learning. edings of IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS), London, UK, September 2007; pp. 164–169.
[14]  Jimenez-Hernandez, H.; Gonzalez-Barbosa, J.J.; Garcia-Ramirez, T. Detecting abnormal vehicular dynamics at intersections based on an unsupervised learning approach and a stochastic model. Sensors 2010, 10, 7576–7601.
[15]  Tyagi, V.; Kalyanaraman, S.; Krishnapuram, R. Vehicular traffic density state estimation based on cumulative road acoustics. IEEE Trans. Intell Transp. Syst. 2012, 13, 1156–1166.
[16]  Artimy, M. Local density estimation and dynamic transmission-range assignment in vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 2007, 8, 400–412.
[17]  Stanica, R.; Chaput, E.; Beylot, A. Local Density Estimation for Contention Window Adaptation in Vehicular Networks. edings of IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Toronto, ON, Canada, September 2011; pp. 730–734.
[18]  Venkata, M.D.; Pai, M.M.M.; Pai, R.M.; Mouzna, J. Traffic Monitoring and Routing in VANETs—A Cluster Based Approach. edings of 11th International Conference on ITS Telecommunications (ITST), St. Petersburg, Russia, August 2011; pp. 27–32.
[19]  Balcilar, M.; Sonmez, A. Extracting Vehicle Density from Background Estimation Using Kalman Filter. edings of 23rd International Symposium on Computer and Information Sciences (ISCIS '08), Istanbul, Turkey, October 2008; pp. 1–5.
[20]  Anand, R.; Vanajakshi, L.; Subramanian, S. Traffic Density Estimation under Heterogeneous Traffic Conditions Using Data Fusion. edings of IEEE Intelligent Vehicles Symposium (IV), Alcala de Henares, Spain, June 2011; pp. 31–36.
[21]  Martinez, F.J.; Fogue, M.; Toh, C.K.; Cano, J.C.; Calafate, C.T.; Manzoni, P. Computer simulations of VANETs using realistic city topologies. Wirel Pers. Commun. 2012, 1–25.
[22]  Fall, K.; Varadhan, K. ns Notes and Documents. The VINT Project. UC Berkeley, LBL, USC/ISI, and Xerox PARC, 2000. Available online: http://www.isi.edu/nsnam/ns/ns-documentation.html (accessed on 6 January 2013).
[23]  Tseng, Y.C.; Ni, S.Y.; Chen, Y.S.; Sheu, J.P. The broadcast storm problem in a mobile ad hoc network. Wirel. Netw. 2002, 8, 153–167.
[24]  Fogue, M.; Garrido, P.; Martinez, F.J.; Cano, J.C.; Calafate, C.T.; Manzoni, P. Evaluating the impact of a novel message dissemination scheme for Vehicular Networks using real maps. Transp. Res. Part C Emerg. Technol. 2012, 25, 61–80.
[25]  Fogue, M.; Garrido, P.; Martinez, F.J.; Cano, J.C.; Calafate, C.T.; Manzoni, P. A Realistic Simulation Framework for Vehicular Networks. edings of 5th International ICST Conference on Simulation Tools and Techniques (SIMUTools 2012), Desenzano, Italy; 2012; pp. 37–46.
[26]  OpenStreetMap. Collaborative Project to Create a Free Editable Map of the World. 2012. Available online: http://www.openstreetmap.org (accessed on 6 January 2013).
[27]  Krauss, S.; Wagner, P.; Gawron, C. Metastable states in a microscopic model of traffic flow. Phys. Rev. E 1997, 55, 5597–5602.
[28]  ZunZun. Online Curve Fitting and Surface Fitting Web Site. 2012. Available online: http://www.zunzun.com (accessed on 6 January 2013).
[29]  Krajzewicz, D.; Rossel, C. Simulation of Urban Mobility (SUMO). Centre for Applied Informatics (ZAIK) and the Institute of Transport Research at the German Aerospace Centre, 2012. 2012. Available online: http://sumo.sourceforge.net (accessed on 6 January 2013).
[30]  Fogue, M.; Garrido, P.; Martinez, F.J.; Cano, J.C.; Calafate, C.T.; Manzoni, P. An adaptive system based on roadmap profiling to enhance warning message dissemination in VANETs. IEEE/ACM Trans. Netw. 2012. org/10.1109/TNET.2012.2212206.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133