A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ~0.07 N and ~46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or traffic vibration in the environment.
Sherif, S.A.; Barbir, F.; Veziroglu, T.N. Wind energy and the hydrogen economy—review of the technology. Solar Energy 2005, 78, 647–660.
[3]
Das, D.; Nejat, V.T. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy 2001, 26, 13–28.
[4]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
[5]
Kazuhior, S.; Kazuaki, M.; Ryu, A.; Yoshimoto, A.; Hironori, A. A new photocatalytic water splitting system under visiable light irradiation mimicking a Z-scheme mechanism in photosynthesis. J. Photochem. Photobiol. 2002, 148, 71–77.
[6]
Gr?tzel, M. Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Acc. Chem. Res. 1981, 14, 376–384.
[7]
Frank, E.O. Inoranic materials as Catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54.
[8]
Agrafiotis, C.; Roeb, M.; Konstandopoulos, A.G.; Nalbandian, L.; Zaspalis, V.T.; Sattler, C.; Stobbe, P.; Steele, A.M. Solar water splitting for hydrogen production with monolithic reactors. Solar Energy 2005, 79, 409–421.
[9]
Bard, A.J.; Fox, M.A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.
[10]
Kamen, M.D.; Gest, H. Evidence for a nitrogenase system in the photosynthetic bacterium rbodospirillum rubrum. Science 1949, 109, 560–560.
[11]
Debabrata, D.; Veziroglu, T.N. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 2001, 26, 13–28.
[12]
Khanal, S.K.; Chen, W.-H.; Li, L.; Sung, S.H. Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrogen Energy 2004, 29, 1123–1131.
[13]
Yu, H.Q.; Zhu, Z.H.; Hu, W.R.; Zhang, H.S. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int. J. Hydrogen Energy 2002, 27, 1359–1365.
[14]
Wakayama, T.; Nakada, E.; Asada, Y.; Miyake, J. Effect of light/dark cycle on bacterial hydrogen production by Rhodobacter sphaeroides RV. From hour to second range. Appl. Biochem. Biotechnol. 2000, 84, 431–440.
[15]
Yoshiyuki, U.; Tatsushi, K.; Susumu, S.; Otsuka, S.; Morimoto, M. Biological production of hydrogen from cellulose by natural anaerobic microflora. J. Ferment. Bioeng. 1995, 97, 395–397.
[16]
Lallart, M.; Inman, D.J.; Guyomar, D. Transient performance of energy harvesting strategies under constant force magnitude excitation. J. Intell. Mater. Syst. Struct. 2010, 21, 1279–1291.
[17]
Yang, R.; Qin, R.; Li, C.; Zhu, G.; Wang, Z.L. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 2009, 9, 1201–1205.
[18]
Hong, K.S.; Xu, H.-F.; Konishi, H.; Li, X.C. Direct water splitting through vibrating piezoelectric microfiber in water. J. Phys. Chem. Lett. 2010, 1, 997–1002.
[19]
Roundy, S.; Write, P.K.; Rabaey, J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2003, 26, 1131–1141.
[20]
Fang, H.B.; Liu, J.Q.; Xu, Z.Y. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron. J. 2006, 37, 1280–1284.
[21]
Shen, D.; Park, J.H. Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens. Actuat. A Phys. 2009, 154, 103–108.
[22]
Ren, B.; Or, S.W.; Zhang, Y.-Y. Piezoelectric energy harvesting using shear mode 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal cantilever. Appl. Phys. Lett. 2010, 96, 083502.
[23]
Levie, R. The electrolysis of water. J. Electroanal. Chem. 1999, 476, 92–93.
[24]
Appleby, A.J.; Crepy, G.; Jacquelin, J. High efficiency water electrolysis in alkaline solution. Int. J. Hydrogen Energy 1978, 3, 21–37.
[25]
Jia, Y.; Luo, H.; Zhao, X.; Wang, F. Giant magnetoelectric response from a piezoelectric/magnetostrictive laminated composite combined with a piezoelectric transformer. Adv. Mater. 2008, 20, 4776–4779.
[26]
Connelly, K.A.; Hicham, I. The photoreaction of TiO2 and Au/TiO2 single crystal and power surfaces with organic adsorbates. Emphasis on hydrogen production from renewables. Green Chem. 2012, 14, 260–280.
[27]
Bowker, M. Sustainable hydrogen production by the application of ambient temperature photocatalysis. Green Chem. 2011, 13, 2235–2246.
[28]
Kurihara, T.; Hiroaki, O.; Miseki, Y.; Kato, H.; Kudo, A. Highly efficient water splitting over K3Ta3B2O12 photocatalyst without loading cocatalyst. Chem. Lett. 2006, 35, 274–275.
[29]
Mall, S.; Hsu, T.L. Electromechanical fatigue behavior of graphite/epoxy laminate embedded with piezoelectric actuator. Smart Mater. Struct. 2000, 9, 78–84.
[30]
Hong, K.-S.; Xu, H.; Konishi, H.; Li, X. Piezoelectrochemical effect: A new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers. J. Phys. Chem. C. 2012, 116, 13045–13051.