We propose a new approach for creating reconfigurable high- Q cavities in defect-free photonic crystal slabs (PCSs). The approach relies on selective air-hole infiltration in otherwise defect-free PCSs. We show that using this method we can design ultrahigh- Q microcavities, with Q~10 6. Numerical calculations indicate a large number of high- Q modes with high sensitivity, which are ideal for simultaneous, multi-parameter refractive index-based sensing.
References
[1]
Noda, S.; Fujita, M.; Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonic. 2007, 1, 449–458.
[2]
Kuramochi, E.; Notomi, M.; Mitsugi, S.; Shinya, A.; Tanabe, T. Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett. 2006, 88, 041112.
[3]
Tomljenovic-Hanic, S.; de Sterke, C.M.; Steel, M.J. Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration. Opt. Exp. 2006, 14, 12451–12456.
[4]
Bordas, F.; Steel, M.J.; Seassal, C.; Rahmani, A. Confinement of band-edge modes in a photonic crystal slab. Opt. Exp. 2007, 15, 10890–10902.
[5]
Tomljenovic-Hanic, S.; de Sterke, C.M. Design of ultrahigh-Q photoinduced cavities in defect-free photonic crystal slabs. Opt. Exp. 2010, 18, 21397–21403.
Intonti, F.; Vignolini, S.; Turck, V.; Colocci, M.; Bettotti, P.; Pavesi, L.; Schweizer, S.L.; Wehrspohn, R.; Wiersma, D. Rewritable photonic circuits. Appl. Phys. Lett. 2006, 89, 211117.
[13]
van der Heijden, R.; Carlstrom, C.F.; Snijders, J.A.P.; van der Heijden, R.W.; Karouta, F.; Notzel, R.; Salemink, H.W.M.; Kjellander, B.K.C.; Bastiaansen, C.W.M.; Broer, D.J.; van der Drift, E. InP-based two-dimensional photonic crystals filled with polymers. Appl. Phys. Lett. 2006, 88, 161112.
[14]
El-Kallassi, P.; Balog, S.; Houdré, R.; Balet, L.; Li, L.; Francardi, M.; Gerardino, A.; Fiore, A.; Ferrini, R.; Zuppiroli, L. Local infiltration of planar photonic crystals with UV-curable polymers. J. Opt. Soc. Am. B 2008, 25, 1562–1567.
[15]
Busch, K.; John, S. Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys. Rev. Lett. 1999, 83, 967–970.
[16]
Maune, B.; Loncar, M.; Wtzens, J.; Hochberg, M.; Baehr-Jones, T.; Qiu, Y. Liquid-crystal electric tuning of a photonic crystal laser. Appl. Phys. Lett. 2004, 85, 360–362.
[17]
Bedoya, A.C.; Mahmodian, S.; Monat, M.; Tomljenovic-Hanic, S.; Grillet, C.; Domachuk, P.; Eggleton, B.J.; van der Heijden, R.W. Local liquid crystal infiltrated photonic crystal waveguides for tunable microcavities. Opt. Exp. 2010, 18, 27280–27290.
[18]
Karnutsch, C.; Tomljenovic-Hanic, S.; Monat, C.; Eggleton, B. J. Reconfigurable Photonic Crystal Circuits Using Microfluidics. In Optofluidics Fundamentals, Devices, and Applications, 1st ed.; Fainman, Y., Lee, L., Psaltis, D., Yang, C., Eds.; McGraw-Hill: USA, 2010; pp. 421–458.
[19]
Srinivasan, K.; Barclay, P.E.; Painter, O. Fabrication-tolerant high quality factor photonic crystal microcavities. Opt. Exp. 2004, 12, 1458–1463.
[20]
Englund, D.; Fushman, I.; Vuckovic, J. General recipe for designing photonic crystal cavities. Opt. Exp. 2005, 13, 5961–5975.
[21]
Tomljenovic-Hanic, S.; Rahmani, A.; Steel, M.J.; de Sterke, C.M. Comparison of the sensitivity of air and dielectric modes in photonic crystal sensors. Opt. Exp. 2009, 17, 14552–14557.