全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Development and Evaluation of a Combined Cultivator and Band Sprayer with a Row-Centering RTK-GPS Guidance System

DOI: 10.3390/s130303313

Keywords: weed control, automation, GPS, sugar beet

Full-Text   Cite this paper   Add to My Lib

Abstract:

Typically, low-pressure sprayers are used to uniformly apply pre- and post-emergent herbicides to control weeds in crop rows. An innovative machine for weed control in inter-row and intra-row areas, with a unique combination of inter-row cultivation tooling and intra-row band spraying for six rows and an electro-hydraulic side-shift frame controlled by a GPS system, was developed and evaluated. Two weed management strategies were tested in the field trials: broadcast spraying (the conventional method) and band spraying with mechanical weed control using RTK-GPS (the experimental method). This approach enabled the comparison between treatments from the perspective of cost savings and efficacy in weed control for a sugar beet crop. During the 2010–2011 season, the herbicide application rate (112 L ha ? 1) of the experimental method was approximately 50% of the conventional method, and thus a significant reduction in the operating costs of weed management was achieved. A comparison of the 0.2-trimmed means of weed population post-treatment showed that the treatments achieved similar weed control rates at each weed survey date. Sugar beet yields were similar with both methods ( p = 0.92). The use of the experimental equipment is cost-effective on ≥20 ha of crops. These initial results show good potential for reducing herbicide application in the Spanish beet industry.

References

[1]  Slaughter, D.C.; Giles, D.K.; Fennimore, S.A.; Smith, R.F. Multispectral machine vision identification of lettuce and weed seedlings for automated weed control. Weed Technol. 2008, 22, 378–384.
[2]  Brandes, A. Ertrag und Qualit?t von Zuckerrüben in Abh?ngigkeit von Restverunkrautung und Standort. Ph.D. Theis, Universit?t G?ttingen, G?ttingen, Germany, 2000.
[3]  Naylor, R.E.L. Weed Management Handbook; Naylor, R.E.L., Ed.; Blackwell Science: Oxford, UK, 1963.
[4]  J?rgensen, R.N.; S?rensen, C.G.; Maagaard, J.; Havn, I.; Jensen, J.; S?gaard, H.T.; S?rensen, L.B. HortiBot: A system design of a robotic tool carrier for high-tech plant nursing. CIGR J. Sci. Res. Dev. 2007, IX, 13–21.
[5]  N?rremark, M.; Griepentrog, H.W.; Nielsen, J.; S?gaard, H.T. The development and assessment of the accuracy of an autonomous GPS-based system for intra-row mechanical weed control in row crops. Biosyst. Eng. 2008, 101, 396–410.
[6]  Slaughter, D.C.; Pérez-Ruiz, M.; Gliever, C.; Upadhayaya, S.; Sun, H. Automatic Weed Control System for Processing Tomatoes. Proceedings of the XVIIth World Congress of the International Commission for Agricultural Engineering (CIGR), Québec City, Canada, 13–17 June 2010; pp. 131–132.
[7]  Van Evert, F.K.; Samson, J.; Polder, G.; Vijn, M.; van Dooren, H.; Lamaker, A.; van Der Heijden, G.W.A.M.; van der Zalm, T.; Lotz, L.A. A robot to detect and control broad-leaved dock (Rumex obtusifolius L.) in grassland. J. Field Rob. 2011, 28, 264–277.
[8]  Karimi, D.; Mann, D. Torque feedback on the steering wheel of agricultural vehicles. Comput. Electr. Agric. 2009, 65, 77–84.
[9]  López-Granados, F. Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Res. 2011, 51, 1–11.
[10]  Xue, J.; Zhang, L.; Grift, T.E. Variable field-of-view machine vision based row guidance of an agricultural robot. Comup. Electr. Agric. 2012, 84, 85–91.
[11]  Griepentrog, H.W.; N?rremark, M.; Nielsen, H.; Blackmore, B.S. Individual Plant Care in Cropping Systems. Proceedings of the 4th European Conference on Precision Agriculture, Berlin, Germany, 16–18 June 2003; pp. 247–251.
[12]  Lampkin, N. The Living Soil; Farming Press: Ipswich, UK, 1994. Chapter 2; pp. 13–51.
[13]  Mohler, C.L. Mechanical Management of Weeds. In Ecological Management of Agricultural Weeds; Liebman, M., Mohler, C.L., Staver, C.P., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 139–209.
[14]  Melander, B. Optimization of the adjustment of a vertical axis rotary brush weeder for intra-row weed control in row crops. J. Agric. Eng. Res. 1997, 68, 39–50.
[15]  Tillett, N.D.; Hague, T.; Miles, S.J. Inter-row vision guidance for mechanical weed control in sugar beet. Comput. Electr. Agr. 2002, 33, 163–177.
[16]  Kaya, R.; Buzluk, S. Integrated weed control in sugar beet through combinations of tractor hoeing and reduced dosages of a herbicide mixture. Turkish J. Agr. For. 2006, 30, 137–144.
[17]  Tillett, N.D.; Hague, T. Increasing work rate in vision guided precision banded operations. Biosyst. Eng. 2006, 94, 487–494.
[18]  M?rl?nder, B.; Hoffman, C.; Koch, H.-J.; Ladewig, E.; Merkes, R.; Petersen, J.; Stockfisch, N. Environmental situation and yield performance of the sugar beet crop in germany: Heading for sustainable development. J. Agron. Crop Sci. 2003, 189, 201–226.
[19]  Dietsch, A. Rentabilit?t und Umweltvertr?glichkeit der Unkrautregulierung in gentechnisch ver?nderten herbizidtoleranten Zuckerrüben—ein Beitrag zur nachhaltigen Entwicklung des Zuckerrübenanbaus. Ph.D. Thesis, Universit?t G?ttingen, Kinzel, G?ttingen, Germany, 2002.
[20]  Cowan, T.; Alexander, K. Deregulating Genetically Engineered Alfalfa and Sugar Beets: Legal and Administrative Responses. Congressional Research Service, 2012. Available online: http://www.fas.org/sgp/crs/misc/R41395.pdf (accessed on 27 December 2012).
[21]  Wevers, J.D.A. Reduced Environmental Contamination by New Herbicide Formulations. Proceedings of the 60th IIRB Congress, Cambridge, UK, 1–3 July 1997; pp. 169–176.
[22]  Melander, B.; Rasmussen, I.A.; Barberi, P. Integrating physical and cultural methods of weed control: Examples from European research. Weed Sci. 2005, 53, 369–381.
[23]  Griepentrog, H.W.; Norremark, M.; Nielsen, J.; Soriano Ibarra, J. Autonomous Inter-row Hoeing using GPS Based Side-shift Control. Proceedings of Automation Technology for Off-Road, Bonn, Germany, 1–2 September 2006; pp. 117–124.
[24]  Leer, S.; Lowenberg-DeBoer, J. Purdue Study Drives Home Benefits of GPS Auto Guidance. 2004. Available online: http://news.uns.purdue.edu/UNS/html4ever/2004/040413.Lowenberg.gps.html (accessed on 16 May 2011).
[25]  Abidine, A.Z.; Heidman, B.C.; Upadhyaya, S.K.; Hills, D.J. Autoguidance system operated at high speed causes almost no tomato damage. California Agric. 2004, 58, 44–47.
[26]  Leandro, R.F.; Santos, M.C.; Langley, R.B. Analyzing GNSS data in precise point positioning software. GPS Solut. 2011, 30, 1–13.
[27]  Moreno, F.L.; Vaz, R.P.; Fernández, E.B.; Cabrera, F.C. Simulating the composition of the in situ soil solution by the model Expreso: Application to a Reclaimed Marsh Soil of SW Spain irrigated with saline water. Agr. Water Manag. 2004, 66, 113–124.
[28]  Wyse, R. Sucrose uptake by sugar beet tap root tissue. Plant Physiol. 1979, 64, 837–841.
[29]  Taylor, R.K.; Schrock, M.D. Dynamic Testing of GPS Receivers. Paper No. 03–1013; ASABE: St. Joseph, MI, USA, 2003.
[30]  R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. Available online: http://www.R-project.org/ (accessed on 18 June 2011).
[31]  Rao, V.S. Principles of Weed Science; Science Publisher, Inc.: Endfield, NH, USA, 2000.
[32]  Wilcox, R. Comparing robust nonparametric regression lines via regression depth. J. Statist. Comput. Simul. 2010, 80, 379–387.
[33]  Yuen, K.K. The two-sample trimmed t for unequal population variances. Biometrika 1974, 61, 165–170.
[34]  Romero, C. Evaluación Financiera de Inversiones Agrarias; Mundi-Prensa: Madrid, Spain, 1998.
[35]  Goering, C.E.; Hansen, A.C. Engine and Tractor Power, 4th ed. ed.; ASABE: St. Joseph, MI, USA, 2008.
[36]  Srivastava, A.K.; Goering, C.E.; Rohrbach, R.P.; Buckmaster, D.R. Engineering Principles of Agricultural Machines, 2nd ed. ed.; ASABE: St. Joseph, MI, USA, 2006.
[37]  Agricultural Machinery Management Data. ASABE Standards: ASABE D497.7MAR2011; ASABE: St. Joseph, MI, USA, 2011.
[38]  Ballestero, E. Contabilidad Agraria; Mundi-Prensa: Madrid, Spain, 1996.
[39]  Hembree, K.J. Sugarbeet Integrated Weed Management. In UC Pest Management Guidelines. UC ANR Publication 3469; UC Cooperative Extension: Fresno, CA, USA, 2010.
[40]  Wanternberg, G.; Dammer, K.H. Experiences in developing technologies in site-specific herbicide spraying in real time. J. Plant Diseases Protect. 2002, 18, 443–450.
[41]  Fennimore, S.A.; Tourte, L.J.; Rachuy, J.S.; Smith, R.F.; George, C.A. Evaluation and economics of a machine-vision guided cultivation program in broccoli and lettuce. Weed Technol. 2010, 24, 33–38.
[42]  Pedersen, S.M.; Fountas, S.; Have, H.; Blackmore, B.S. Agricultural robots-system analysis and economic feasibility. Prec. Agr. 2006, 7, 295–308.
[43]  Bermejo, J.L.; Ayala, J.; Morillo-Velarde, R. Recommendations for sugar beet production. J. Res. AIMCRA 2001, 71, 22–31.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133