全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

DOI: 10.3390/s130303299

Keywords: terahertz spectroscopy, polarization analysis, electro-optic sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications.

References

[1]  Aspnes, D.E.; Studna, A.A. High precision scanning ellipsometer. Appl. Opt. 1975, 14, 220–228.
[2]  Kikkawa, J.M.; Smorchkova, I.P.; Samarth, N.; Awschalom, D.D. Room-temperature spin memory in two-dimensional electron gases. Science 1997, 277, 1284–1287.
[3]  Gupta, J.A.; Knobel, R.; Samarth, N.; Awschalom, D.D. Ultrafast manipulation of electron spin coherence. Science 2001, 292, 2458–2461.
[4]  Kimel, A.V.; Kirilyuk, A.; Tsvetkov, A.; Pisarev, R.V.; Rasing, T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 2004, 429, 850–853.
[5]  Kimel, A.V.; Kirilyuk, A.; Usachev, P.A.; Pisarev, R.V.; Balbashov, A.M.; Rasing, T. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 2005, 435, 655–657.
[6]  N?lting, B. Protein Folding Kinetics: Biophysical Methods, 2nd ed. ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2006; pp. 98–104.
[7]  Castro-Camus, E. Polarization-resolved terahertz time-domain spectroscopy. J. Infrared Millim. Terahertz Waves 2012, 33, 418–430.
[8]  Nagashima, T.; Hangyo, M. Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry. Appl. Phys. Lett. 2001, 79, 3917–3919.
[9]  Matsumoto, N.; Hosokura, T.; Nagashima, T.; Hangyo, M. Measurement of the dielectric constant of thin films by terahertz time-domain spectroscopic ellipsometry. Opt. Lett. 2011, 36, 265–267.
[10]  Hofmann, T.; Herzinger, C.M.; Tedesco, J.L.; Gaskill, D.K.; Woollam, J.A.; Schubert, M. Terahertz ellipsometry and terahertz optical-Hall effect. Thin Solid Films 2011, 519, 2593–2600.
[11]  Tielrooij, K.J.; van der Post, S.T.; Hunger, J.; Bonn, M.; Bakker, H.J. Anisotropic water reorientation around ions. J. Phys. Chem. B 2011, 115, 12638–12647.
[12]  Li, M.; Pan, H.F.; Tong, Y.Q.; Chen, C.; Shi, Y.; Wu, J.; Zeng, H.P. All-optical ultrafast polarization switching of terahertz radiation by impulsive molecular alignment. Opt. Lett. 2011, 36, 3633–3635.
[13]  Parks, B.; Spielman, S.; Orenstein, J.; Nemeth, D.T.; Ludwig, F.; Clarke, J.; Merchant, P.; Lew, D.J. Phase-sensitive measurements of vortex dynamics in the terahertz domain. Phys. Rev. Lett. 1995, 74, 3265–3268.
[14]  Parks, B.; Spielman, S.; Orenstein, J. High-frequency Hall effect in the normal state of YBa2Cu3O7. Phys. Rev. B 1997, 56, 115–117.
[15]  Ozyuzer, L.; Koshelev, A.E.; Kurter, C.; Gopalsami, N.; Li, Q.; Tachiki, M.; Kadowaki, K.; Yamamoto, T.; Minami, H.; Yamaguchi, H.; et al. Emission of coherent THz radiation from superconductors. Science 2007, 318, 1291–1293.
[16]  Kaneko, R.; Kawayama, I.; Murakami, H.; Tonouchi, M. Detection of pulsed terahertz waves using high-temperature superconductor josephson junction. Appl. Phys. Express 2010, 3, 042701:1–042701:3.
[17]  Averkov, Y.O.; Yakovenko, V.M.; Yampol'skii, V.A.; Nori, F. Conversion of terahertz wave polarization at the boundary of a layered superconductor due to the resonance excitation of oblique surface waves. Phys. Rev. Lett. 2012, 109, doi:10.1103/PhysRevLett.109.027005.
[18]  Kezsmarki, I.; Kida, N.; Murakawa, H.; Bordacs, S.; Onose, Y.; Tokura, Y. Enhanced directional dichroism of terahertz light in resonance with magnetic excitations of the multiferroic Ba2CoGe2O7 Oxide compound. Phys. Rev. Lett. 2011, 106, doi:10.1103/PhysRevLett.106.057403.
[19]  Ikebe, Y.; Morimoto, T.; Masutomi, R.; Okamoto, T.; Aoki, H.; Shimano, R. Optical hall effect in the integer quantum hall regime. Phys. Rev. Lett. 2010, 104, doi:10.1103/PhysRevLett.104.256802.
[20]  Hofmann, T.; Boosalis, A.; Kuhne, P.; Herzinger, C.M.; Woollam, J.A.; Gaskill, D.K.; Tedesco, J.L.; Schubert, M. Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry. Appl. Phys. Lett. 2011, 98, doi:10.1063/1.3548543.
[21]  Kida, N.; Kumakura, S.; Ishiwata, S.; Taguchi, Y.; Tokura, Y. Gigantic terahertz magnetochromism via electromagnons in the hexaferrite magnet Ba2Mg2Fe12O22. Phys. Rev. B 2011, 83, doi:10.1103/PhysRevB.83.064422.
[22]  Shimano, R.; Ikebe, Y.; Takahashi, K.S.; Kawasaki, M.; Nagaosa, N.; Tokura, Y. Terahertz Faraday rotation induced by an anomalous hall effect in the itinerant ferromagnet SrRuO3. EPL 2011, 95, doi:10.1209/0295-5075/95/17002.
[23]  Nakajima, M.; Namai, A.; Ohkoshi, S.; Suemoto, T. Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field. Opt. Express. 2010, 18, 18260–18268.
[24]  Kampfrath, T.; Sell, A.; Klatt, G.; Pashkin, A.; Mahrlein, S.; Dekorsy, T.; Wolf, M.; Fiebig, M.; Leitenstorfer, A.; Huber, R. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 2011, 5, 31–34.
[25]  Higuchi, T.; Kanda, N.; Tamaru, H.; Kuwata-Gonokami, M. Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of Antiferromagnetic NiO. Phys. Rev. Lett. 2011, 106, doi:10.1103/PhysRevLett.106.047401.
[26]  Aguilar, R.V.; Stier, A.V.; Liu, W.; Bilbro, L.S.; George, D.K.; Bansal, N.; Wu, L.; Cerne, J.; Markelz, A.G.; Oh, S.; et al. Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3. Phys. Rev. Lett. 2012, 108, doi:10.1103/PhysRevLett.108.087403.
[27]  Jenkins, G.S.; Sushkov, A.B.; Schmadel, D.C.; Kim, M.H.; Brahlek, M.; Bansal, N.; Oh, S.; Drew, H.D. Giant plateau in the terahertz Faraday angle in gated Bi2Se3. Phys. Rev. B 2012, 86, doi:10.1103/PhysRevB.86.235133.
[28]  Mittleman, D.M.; Cunningham, J.; Nuss, M.C.; Geva, M. Noncontact semiconductor wafer characterization with the terahertz Hall effect. Appl. Phys. Lett. 1997, 71, 16–18.
[29]  Shimano, R.; Ino, Y.; Yu, P.S.; Kuwata-Gonokami, M. Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs. Appl. Phys. Lett. 2002, 81, doi:10.1063/1.1492319.
[30]  Ikebe, Y.; Shimano, R. Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect. Appl. Phys. Lett. 2008, 92, doi:10.1063/1.2830697.
[31]  Jordens, C.; Scheller, M.; Wichmann, M.; Mikulics, M.; Wiesauer, K.; Koch, M. Terahertz birefringence for orientation analysis. Appl. Opt. 2009, 48, 2037–2044.
[32]  Jordens, C.; Scheller, M.; Wietzke, S.; Romeike, D.; Jansen, C.; Zentgraf, T.; Wiesauer, K.; Reisecker, V.; Koch, M. Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics. Compos. Sci. Technol. 2010, 70, 472–477.
[33]  Wang, X.K.; Cui, Y.; Sun, W.F.; Ye, J.S.; Zhang, Y. Terahertz polarization real-time imaging based on balanced electro-optic detection. J. Opt. Soc. Am. A 2010, 27, 2387–2393.
[34]  Katletz, S.; Pfleger, M.; Puhringer, H.; Mikulics, M.; Vieweg, N.; Peters, O.; Scherger, B.; Scheller, M.; Koch, M.; Wiesauer, K. Polarization sensitive terahertz imaging: Detection of birefringence and optical axis. Opt. Express 2012, 20, 23025–23035.
[35]  Feldman, Y.; Puzenko, A.; Ben, I.P.; Caduff, A.; Agranat, A.J. Human skin as arrays of helical antennas in the millimeter and submillimeter wave range. Phys. Rev. Lett. 2008, 100, doi:10.1103/PhysRevLett.100.128102.
[36]  Ney, M.; Abdulhalim, I. Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region. J. Biomed. Opt. 2011, 16, doi:10.1117/1.3592779.
[37]  Yasumatsu, N.; Watanabe, S. T-ray topography by time-domain polarimetry. Opt. Lett. 2012, 37, 2706–2708.
[38]  Deng, L.Y.; Teng, J.H.; Zhang, L.; Wu, Q.Y.; Liu, H.; Zhang, X.H.; Chua, S.J. Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure. Appl. Phys. Lett. 2012, 101, doi:10.1063/1.4729826.
[39]  Takano, K.; Yokoyama, H.; Ichii, A.; Morimoto, I.; Hangyo, M. Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology. Opt. Lett. 2011, 36, 2665–2667.
[40]  Yu, Y.; Yang, Z.Y.; Zhao, M.; Lu, P.X. Broadband optical circular polarizers in the terahertz region using helical metamaterials. J. Opt. 2011, 13, doi:10.1088/2040-8978/13/5/055104.
[41]  Chen, H.T.; Padilla, W.J.; Zide, J.M.O.; Gossard, A.C.; Taylor, A.J.; Averitt, R.D. Active terahertz metamaterial devices. Nature 2006, 444, 597–600.
[42]  Kuwata-Gonokami, M.; Saito, N.; Ino, Y.; Kauranen, M.; Jefimovs, K.; Vallius, T.; Turunen, J.; Svirko, Y. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 2005, 95, doi:10.1103/PhysRevLett.95.227401.
[43]  Fedotov, V.A.; Mladyonov, P.L.; Prosvirnin, S.L.; Rogacheva, A.V.; Chen, Y.; Zheludev, N.I. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys. Rev. Lett. 2006, 97, doi:10.1103/PhysRevLett.97.167401.
[44]  Miyamaru, F.; Hangyo, M. Strong optical activity in chiral metamaterials of metal screw hole arrays. Appl. Phys. Lett. 2006, 89, doi:10.1063/1.2392787.
[45]  Zhu, W.M.; Liu, A.Q.; Zhang, W.; Tao, J.F.; Bourouina, T.; Teng, J.H.; Zhang, X.H.; Wu, Q.Y.; Tanoto, H.; Guo, H.C.; et al. Polarization dependent state to polarization independent state change in THz metamaterials. Appl. Phys. Lett. 2011, 99, doi:10.1063/1.3664131.
[46]  Zhang, Y.X.; Zhou, Y.C.; Ma, Y.; Huang, W.X.; Jia, J.; Liu, S.G. Role of incident polarization in THz transmission through the hole array. J. Phys. B 2011, 44, doi:10.1088/0953-4075/44/24/245401.
[47]  Nakata, Y.; Okada, T.; Nakanishi, T.; Kitano, M. Observation of flat band for terahertz spoof plasmons in a metallic kagome lattice. Phys. Rev. B 2012, 85, doi:10.1103/PhysRevB.85.205128.
[48]  Kumar, N.; Strikwerda, A.C.; Fan, K.B.; Zhang, X.; Averitt, R.D.; Planken, P.C.M.; Adam, A.J.L. THz near-field Faraday imaging in hybrid metamaterials. Opt. Express 2012, 20, 11277–11287.
[49]  Cetnar, J.S.; Middendorf, J.R.; Brown, E.R. Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer. Appl. Phys. Lett. 2012, 100, doi:10.1063/1.4724315.
[50]  Huang, C.; Feng, Y.J.; Zhao, J.M.; Wang, Z.B.; Jiang, T. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Phys. Rev. B 2012, 85, doi:10.1103/PhysRevB.85.195131.
[51]  Kondo, T.; Nagashima, T.; Hangyo, M. Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer. Jpn. J. Appl. Phys. Part 2-Lett. 2003, 42, L373–L375.
[52]  Ung, B.S.Y.; Fumeaux, C.; Lin, H.Y.; Fischer, B.M.; Ng, B.W.H.; Abbott, D. Low-cost ultra-thin broadband terahertz beam-splitter. Opt. Express 2012, 20, 4968–4978.
[53]  Ren, L.; Pint, C.L.; Arikawa, T.; Takeya, K.; Kawayama, I.; Tonouchi, M.; Hauge, R.H.; Kono, J. Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks. Nano. Lett. 2012, 12, 787–790.
[54]  Hong, J.T.; Park, D.J.; Moon, J.Y.; Choi, S.B.; Park, J.K.; Rotermund, F.; Park, J.Y.; Lee, S.; Ahn, Y.H. Terahertz wave applications of single-walled carbon nanotube films with high shielding effectiveness. Appl. Phys. Express 2012, 5, doi:10.1143/APEX.5.015102.
[55]  Dong, H.; Gong, Y.D.; Paulose, V.; Hong, M.H. Polarization state and Mueller matrix measurements in terahertz-time domain spectroscopy. Opt. Commun. 2009, 282, 3671–3675.
[56]  Dong, H.; Gong, Y.D.; Olivo, M. Measurement of stokes parameters of terahertz radiation in terahertz time-domain spectroscopy. Microw. Opt. Technol. Lett. 2010, 52, 2319–2324.
[57]  Yandong, G.; Hui, D.; Paulose, V. Simple methods to measure partial polarization parameters in the terahertz band using THz-TDS. Microw. Opt. Technol. Lett. 2010, 52, 2005–2007.
[58]  Castro-Camus, E.; Lloyd-Hughes, J.; Johnston, M.B.; Fraser, M.D.; Tan, H.H.; Jagadish, C. Polarization-sensitive terahertz detection by multicontact photoconductive receivers. Appl. Phys. Lett. 2005, 86, doi:10.1063/1.1951051.
[59]  Tani, M.; Hirota, Y.; Que, C.T.; Tanaka, S.; Hattori, R.; Yamaguchi, M.; Nishizawa, S.; Hangyo, M. Novel terahertz photoconductive antennas. Int. J. Infrared Millim. Waves 2006, 27, 531–546.
[60]  Makabe, H.; Hirota, Y.; Tani, M.; Hangyo, M. Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna. Opt. Express 2007, 15, 11650–11657.
[61]  Hussain, A.; Andrews, S.R. Ultrabroadband polarization analysis of terahertz pulses. Opt. Express. 2008, 16, 7251–7257.
[62]  Drexler, C.; Dyakonova, N.; Olbrich, P.; Karch, J.; Schafberger, M.; Karpierz, K.; Mityagin, Y.; Lifshits, M.B.; Teppe, F.; Klimenko, O.; et al. Helicity sensitive terahertz radiation detection by field effect transistors. J. Appl. Phys. 2012, 111, doi:10.1063/1.4729043.
[63]  Planken, P.C.M.; Nienhuys, H.-K.; Bakker, H.J.; Wenckebach, T. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J. Opt. Soc. Am. B 2001, 18, 313–317.
[64]  Van der Valk, N.C.J.; Wenckebach, T.; Planken, P.C.M. Full mathematical description of electro-optic detection in optically isotropic crystals. J. Opt. Soc. Am. B 2004, 21, 622–631.
[65]  Van der Valk, N.C.J.; Van der Marel, W.A.M.; Planken, P.C.M. Terahertz polarization imaging. Opt. Lett. 2005, 30, 2802–2804.
[66]  Adam, A.J.L.; Brok, J.M.; Planken, P.C.M.; Seo, M.A.; Kim, D.S. THz near-field measurements of metal structures. C. R. Phys. 2008, 9, 161–168.
[67]  Zhang, R.; Cui, Y.; Sun, W.F.; Zhang, Y. Polarization information for terahertz imaging. Appl. Opt. 2008, 47, 6422–6427.
[68]  Zhang, L.L.; Zhong, H.; Deng, C.; Zhang, C.L.; Zhao, Y.J. Terahertz polarization imaging with birefringent materials. Opt. Commun. 2010, 283, 4993–4995.
[69]  Jenkins, G.S.; Schmadel, D.C.; Drew, H.D. Simultaneous measurement of circular dichroism and Faraday rotation at terahertz frequencies utilizing electric field sensitive detection via polarization modulation. Rev. Sci. Instrum. 2010, 81, doi:10.1063/1.3480554.
[70]  George, D.K.; Stier, A.V.; Ellis, C.T.; McCombe, B.D.; Cerne, J.; Markelz, A.G. Terahertz magneto-optical polarization modulation spectroscopy. J. Opt. Soc. Am. B 2012, 29, 1406–1412.
[71]  Morris, C.M.; Aguilar, R.V.; Stier, A.V.; Armitage, N.P. Polarization modulation time-domain terahertz polarimetry. Opt. Express 2012, 20, 12303–12317.
[72]  Yasumatsu, N.; Watanabe, S. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor. Rev. Sci. Instrum. 2012, 83, doi:10.1063/1.3683570.
[73]  Han, P.Y.; Zhang, X.C. Free-space coherent broadband terahertz time-domain spectroscopy. Meas. Sci. Technol. 2001, 12, 1747–1756.
[74]  Kampfrath, T.; Notzold, J.; Wolf, M. Sampling of broadband terahertz pulses with thick electro-optic crystals. Appl. Phys. Lett. 2007, 90, doi:10.1063/1.2746939.
[75]  Sell, A.; Leitenstorfer, A.; Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Opt. Lett. 2008, 33, 2767–2769.
[76]  Yasumatsu, N.; Watanabe, S. Precise Polarization Measurements of Terahertz Electromagnetic Waves with a Spinning Electro-Optic Crystal: Theory, Experiments, and Applications. Proceedings of the International Symposium on Frontiers in THz Technology (FTT 2012), Nara, Japan, 27–29 November 2012.
[77]  Jiang, Z.; Sun, F.G.; Chen, Q.; Zhang, X.C. Electro-optic sampling near zero optical transmission point. Appl. Phys. Lett. 1999, 74, 1191–1193.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133