This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system’s outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results.
References
[1]
Johansson, M. Piecewise linear control systems. Lect. Note. Contr. Inf. Sci. 2003, doi:10.1007/3-540-36801-9.
[2]
Liberzon, D. Switching in Systems and Control; Springer: Boston, MA, USA, 2003.
[3]
Rubensson, M.; Lennartson, B. Global Convergense Analysis for Piecewise Linear Systems Applied to Limit Cycles in a DOC Converter. Proceedings of the American Control Conference, Anchorage, AK, USA, 8–10 May 2002; pp. 1272–1277.
[4]
Goncalves, J.M.; Megretski, A.; Dahleh, M.A. Global analysis of piecewise linear systems using impact maps and surface Lyapunov functions. IEEE Trans. Autom. Contr. 2003, 48, 2089–2106.
[5]
De Best, J.T.H.; Bukkems, B.H.M.; De Molengraft, M.J.G.V.; Heemels, W.P.M.H.; Steinbuch, M. Robust control of piecewise linear systems: A case study in sheet flow control. Eng. Pract. 2007, 16, 537–547.
[6]
Stevens, B.; Lewis, F. Aircraft Control and Simulation; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2004.
[7]
Li, F.; Zhang, X. Delay-range-dependent robust H蜴 filtering for singular LPV systems with time variant delay. Int. J. Innov. Comput. Inf. Contr. 2013, 9, 339–353.
[8]
Su, X.; Shi, P.; Wu, L.; Song, Y.D. A novel approach to filter design for T-S fuzzy discrete-time systems with time-varying delay. IEEE Trans. Fuzzy Syst. 2012, 20, 1114–1129.
[9]
Su, X.; Wu, L.; Shi, P. Senor networks with random link failures: Distributed filtering for T-S fuzzy systems. IEEE Trans. Ind. Inf. 2012, doi:10.1109/TII.2012.2231085.
[10]
Su, X.; Shi, P.; Wu, L.; Nguang, S.K. Induced ? 2 filtering of fuzzy stochastic systems with time-varying delays. IEEE Trans. Syst. Man Cybern. B 2012, doi:10.1109/TSMCB.2012.2227721.
[11]
Fahim-Hassan, M. Iterated constrained state estimator for nonlinear discrete-time systems with uncertain parameters. Int. J. Innov. Comput. Inf. Contr. 2012, 8, 6140–6160.
[12]
He, Z.; Wu, J.; Sun, G.; Gao, C. State estimation and sliding mode control of uncertain switched hybrid systems. Int. J. Innov. Comput. Inf. Contr. 2012, 8, 7143–7156.
[13]
Wu, L.; Shi, P.; Gao, H. State estimation and sliding mode control of markovian jump singular systems. IEEE Trans. Autom. Contr. 2010, 55, 1213–1219.
[14]
Barbot, J.P.; Saadaoui, H.; Djemai, M.; Manamanni, N. Nonlinear observer for autonomous switching systems with jumps. Nonlinear Anal. Hybrid Syst. 2007, 1, 537–547.
[15]
Babaali, M.; Egersted, M. Pathwise Observability and Controllability are Decidable. Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, HI, USA, 9– 12 December 2003; pp. 5771–5776.
[16]
Babaali, M.; Egersted, M. Hybrid systems: Computation and control. Lect. Notes Comput. Sci. 2004, 2993, 326–341.
[17]
Goshen-Meskin, D.; Bar-Itzhack, I. Observability analysis of piece-wise constant systems, Part I: Theory. IEEE Trans. Aerosp. Electron. Syst. 1992, 28, 1056–1067.
[18]
Alessandri, A.; Coletta, P. Switching Observers for Continuous Time and Discrete Time Linear Systems. Proceedings of America Control Conference, Arlington, VA, USA, 25–27 June 2001; pp. 2516–2521.
[19]
De Santis, E.; Di Benedetto, M.D.; Pola, G. Observability of Internal Variables in Interconnected Switching Systems. Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 13– 15 December 2006; pp. 4121–4126.
[20]
Alessandri, A.; Coletta, P. Design of Observers for Switched Discrete Time Linear Systems. Proceedings of America Control Conference, Denver, CO, USA, 4–6 June 2003; pp. 2785–2790.
[21]
Alessandri, A.; Baglietto, M.; Battistelli, G. Design of Observer with Commutation-Dependent Gains for Linear Switching Systems. Proceedings of America Control Conference, New York, NY, USA, 11–13 July 2007; pp. 2090–2095.
[22]
Birouche, A.; daafouz, J.; Iung, C. Observer design for a class of discrete time piecewise linear systems. Anal. Des. Hybrid Syst. 2006, 2, 12–17.
[23]
Millerioux, G.; Daafouz, J. Unknown Input Observers for Switched Linear Discrete Time Systems. Proceedings of America Control Conference, Boston, MA, USA, 30 June–2 July 2004; pp. 5802–5805.
[24]
Babaali, M.; Egersted, M.; Kamen, E.W. A direct algebraic approach to observer design under switching measurement equations. IEEE Trans. Autom. Contr. 2004, 49, 2044–2049.
[25]
Brogan, W.L. Modern Control Theory; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1993.