全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A Molecularly Imprinted Polymer with Incorporated Graphene Oxide for Electrochemical Determination of Quercetin

DOI: 10.3390/s130505493

Keywords: molecularly imprinted polymer, graphene oxide, quercetin, modified electrode

Full-Text   Cite this paper   Add to My Lib

Abstract:

The molecularly imprinted polymer based on polypyrrole film with incorporated graphene oxide was fabricated and used for electrochemical determination of quercetin. The electrochemical behavior of quercetin on the modified electrode was studied in detail using differential pulse voltammetry. The oxidation peak current of quercetin in B-R buffer solution (pH = 3.5) at the modified electrode was regressed with the concentration in the range from 6.0 × 10 ?7 to 1.5 × 10 ?5 mol/L (r 2 = 0.997) with a detection limit of 4.8 × 10 ?8 mol/L (S/N = 3). This electrode showed good stability and reproducibility. In the above mentioned range, rutin or morin which has similar structures and at the same concentration as quercetin did not interfere with the determination of quercetin. The applicability of the method for complex matrix analysis was also evaluated.

References

[1]  Di Carlo, G.; Mascolo, N.; Izzo, A.A.; Capasso, F. Flavonoids: Old and new aspects of a class of natural therapeutic drugs. Life Sci. 1999, 65, 337–353.
[2]  Kao, T.H.; Huang, S.C.; Inbaraj, B.S.; Chen, B.H. Determination of flavonoids and saponins in Gynostemma pentaphyllum (Thunb.) Makino by liquid chromatography-mass spectrometry. Anal. Chim. Acta 2008, 626, 200–211.
[3]  Erlund, I.; Kosonen, T.; Alfthan, G.; Maenpaa, J.; Perttunen, K.; Kenraali, J.; Parantainen, J.; Aro, A. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur. J. Clin. Pharmacol. 2000, 56, 545–553.
[4]  Manach, C.; Morand, C.; Crespy, V.; Demigne, C.; Texier, O.; Regerat, F.; Remesy, C. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett. 1998, 426, 331–336.
[5]  Prior, R.L. Absorption and Metabolism of Anthocyanins: Potential Health Effects. Proceedings of the 4th International Phytochemical Conference, Pomona, CA, USA, 21– 22 October 2002.
[6]  Van Acker, S.A.; Tromp, M.N.; Haenen, G.R.; van der Vijgh, W.J.; Bast, A. Flavonoids as scavengers of nitric oxide radical. Biochem. Biophys. Res. Commun. 1995, 214, 755–759.
[7]  Berger, L.M.; Wein, S.; Blank, R.; Metges, C.C.; Wolffram, S. Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin. J. Dairy Sci. 2012, 95, 5047–5055.
[8]  Chen, G.; Zhang, H.W.; Ye, J.N. Determination of baicalein, baicalin and quercetin in scutellariae radix and its preparations by capillary electrophoresis with electrochemical detection. Talanta 2000, 53, 471–479.
[9]  Chen, G.; Zhang, H.W.; Ye, J.N. Determination of rutin and quercetin in plants by capillary electrophoresis with electrochemical detection. Anal. Chim. Acta 2000, 423, 69–76.
[10]  Cao, Y.H.; Zhang, X.; Fang, Y.H.; Ye, J.N. Determination of active ingredients of Apocynum Venetum by capillary electrophoresis with electrochemical detection. Mikrochim. Acta 2001, 137, 57–62.
[11]  Sun, Y.; Guo, T.; Sui, Y.; Li, F.M. Quantitative determination of rutin, quercetin, and adenosine in Flos Carthami by capillary electrophoresis. J. Sep. Sci. 2003, 26, 1203–1206.
[12]  Dmitrienko, S.G.; Kudrinskaya, V.A.; Apyari, V.V. Methods of extraction, preconcentration, and determination of quercetin. J. Anal. Chem. 2012, 67, 299–311.
[13]  Baranowska, I.; Rarog, D. Application of derivative spectrophotometry to determination of flavonoid mixtures. Talanta 2001, 55, 209–212.
[14]  Hassan, H.N.A.; Barsoum, B.N.; Habib, I.H.I. Simultaneous spectrophotometric determination of rutin, quercetin and ascorbic acid in drugs using a kalman filter approach. J. Pharm. Biomed. 1999, 20, 315–320.
[15]  Nematollahi, D.; Malakzadeh, M. Electrochemical oxidation of quercetin in the presence of benzenesulfinic acids. J. Electroanal. Chem. 2003, 547, 191–195.
[16]  Zare, H.R.; Namazian, M.; Nasirizadeh, N. Electrochemical behavior of quercetin: Experimental and theoretical studies. J. Electroanal. Chem. 2005, 584, 77–83.
[17]  Volikakis, G.J.; Efstathiou, C.E. Determination of rutin and other flavonoids by flow-injection/adsorptive stripping voltammetry using nujol-graphite and diphenylether-graphite paste electrodes. Talanta 2000, 51, 775–785.
[18]  He, J.B.; Lin, X.Q.; Pan, J. Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin: A comparison with graphite paste electrode via voltammetry and chronopotentiometry. Electroanal 2005, 17, 1681–1686.
[19]  Xiao, P.; Zhao, F.Q.; Zeng, B.Z. Voltammetric determination of quercetin at a multi-walled carbon nanotubes paste electrode. Microchem. J 2007, 85, 244–249.
[20]  Xu, G.R.; Kim, S. Selective determination of quercetin using carbon nanotube-modified electrodes. Electroanal 2006, 18, 1786–1792.
[21]  Gutierrez, F.; Ortega, G.; Cabrera, J.L.; Rubianes, M.D.; Rivas, G.A. Quantification of quercetin using glassy carbon electrodes modified with multiwalled carbon nanotubes dispersed in polyethylenimine and polyacrylic acid. Electroanal 2010, 22, 2650–2657.
[22]  Franzoi, A.C.; Vieira, I.C.; Scheeren, C.W.; Dupont, J. Development of quercetin biosensor through immobilizing laccase in a modified beta-cyclodextrin matrix containing Ag nanoparticles in ionic liquid. Electroanal 2010, 22, 1376–1385.
[23]  Oliveira, A.C.; Mascaro, L.H. Evaluation of carbon nanotube paste electrode modified with copper microparticles and its application to determination of quercetin. Int. J. Electrochem. Sci. 2011, 6, 804–818.
[24]  Wang, M.Y.; Zhang, D.E.; Tong, Z.W.; Xu, X.Y.; Yang, X.J. Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode. J. Appl. Electrochem 2011, 41, 189–196.
[25]  Khorrami, A.R.; Rashidpur, A. Development of a fiber coating based on molecular sol-gel imprinting technology for selective solid-phase micro extraction of caffeine from human serum and determination by gas chromatography/mass spectrometry. Anal. Chim. Acta 2012, 727, 20–25.
[26]  Ameli, A.; Alizadeh, N. Nanostructured conducting molecularly imprinted polymer for selective extraction of salicylate from urine and serum samples by electrochemically controlled solid-phase micro-extraction. Anal. Chim. Acta 2011, 707, 62–68.
[27]  Ulbricht, M. Membrane separations using molecularly imprinted polymers. J. Chromatogr. B. 2004, 804, 113–125.
[28]  Yang, Z.P.; Zhang, C.J. Molecularly imprinted hydroxyapatite thin film for bilirubin recognition. Biosens. Bioelectron. 2011, 29, 167–171.
[29]  Malitesta, C.; Losito, I.; Zambonin, P.G. Molecularly imprinted electrosynthesized polymers: New materials for biomimetic sensors. Anal. Chem. 1999, 71, 1366–1370.
[30]  Liang, H.J.; Ling, T.R.; Rick, J.F.; Chou, T.C. Molecularly imprinted electrochemical sensor able to enantroselectivly recognize D and L-tyrosine. Anal. Chim. Acta 2005, 542, 83–89.
[31]  Malitesta, C.; Mazzotta, E.; Picca, R.A.; Poma, A.; Chianella, I.; Piletsky, S.A. Mip sensors—the electrochemical approach. Anal. Bioanal. Chem. 2012, 402, 1827–1846.
[32]  Suryanarayanan, V.; Wu, C.T.; Ho, K.C. Molecularly imprinted electrochemical sensors. Electroanal 2010, 22, 1795–1811.
[33]  Yu, H.; Chen, Z.B.; Fu, Y.; Kang, L.; Wang, M.; Du, X.Y. Synthesis and optimization of molecularly imprinted polymers for quercetin. Polym. Int. 2012, 61, 1002–1009.
[34]  Pakade, V.; Lindahl, S.; Chimuka, L.; Turner, C. Molecularly imprinted polymers targeting quercetin in high-temperature aqueous solutions. J. Chromatogr. A 2012, 1230, 15–23.
[35]  Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
[36]  Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Obergfell, D.; Roth, S.; Girit, C.; Zettl, A. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 2007, 143, 101–109.
[37]  Gan, T.; Hu, S.S. Electrochemical sensors based on graphene materials. Microchim. Acta 2011, 175, 1–19.
[38]  Li, Z.J.; Yang, B.C.; Zhang, S.R.; Zhao, C.M. Graphene oxide with improved electrical conductivity for supercapacitor electrodes. Appl. Surf. Sci. 2012, 258, 3726–3731.
[39]  Blake, P.; Brimicombe, P.D.; Nair, R.R.; Booth, T.J.; Jiang, D.; Schedin, F.; Ponomarenko, L.A.; Morozov, S.V.; Gleeson, H.F.; Hill, E.W.; et al. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.
[40]  Zhang, Y.B.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201–204.
[41]  Guo, C.X.; Yang, H.B.; Sheng, Z.M.; Lu, Z.S.; Song, Q.L.; Li, C.M. Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Edit. 2010, 49, 3014–3017.
[42]  Lu, Z.S.; Guo, C.X.; Yang, H.B.; Qiao, Y.; Guo, J.; Li, C.M. One-step aqueous synthesis of graphene-CdTe quantum dot-composed nanosheet and its enhanced photoresponses. J. Colloid. Interf. Sci. 2011, 353, 588–592.
[43]  Liu, W.W.; Yan, X.B.; Lang, J.W.; Chen, J.T.; Xue, Q.J. Influences of the thickness of self-assembled graphene multilayer films on the supercapacitive performance. Electrochim. Acta 2012, 60, 41–49.
[44]  Giovanni, M.; Bonanni, A.; Pumera, M. Detection of DNA hybridization on chemically modified graphene platforms. Analyst 2012, 137, 580–583.
[45]  Wang, Y.; Li, Y.M.; Tang, L.H.; Lu, J.; Li, J.H. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 2009, 11, 889–892.
[46]  Mao, Y.; Bao, Y.; Gan, S.Y.; Li, F.H.; Niu, L. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens. Bioelectron. 2011, 28, 291–297.
[47]  Liu, Y.; Zhu, L.H.; Zhang, Y.Y.; Tang, H.Q. Electrochemical sensoring of 2,4-dinitrophenol by using composites of graphene oxide with surface molecular imprinted polymer. Sens. Actuators B Chem. 2012, 171, 1151–1158.
[48]  Zhu, L.Y.; Wang, Z.H.; Chen, X.Y.; Zhang, F.F.; Xia, Y.Z.; Li, Y.H. Molecularly imprinted polymer incorporated carbon nanotube modified electrode for selective determination of quercetin. J. Instrum. Anal. 2011, 30, 18–23.
[49]  Gam-Derouich, S.; Nguyen, M.N.; Madani, A.; Maouche, N.; Lang, P.; Perruchot, C.; Chehimi, M.M. Aryl diazonium salt surface chemistry and ATRP for the preparation of molecularly imprinted polymer grafts on gold substrates. Surf. Int. Anal. 2010, 42, 1050–1056.
[50]  Shiigi, H.; Yakabe, H.; Kishimoto, M.; Kijima, D.; Zhang, Y.A.; Sree, U.; Deore, B.A.; Nagaoka, T. Molecularly imprinted overoxidized polypyrrole colloids: Promising materials for molecular recognition. Microchim. Acta 2003, 143, 155–162.
[51]  Saoudi, B.; Jammul, N.; Abel, M.; Chehimi, M.; Dodin, G. DNA adsorption onto conducting polypyrrole. Synth. Metals 1997, 87, 97–103.
[52]  Xu, X.L.; Zhou, G.L.; Li, H.X.; Liu, Q.; Zhang, S.; Kong, J.L. A novel molecularly imprinted sensor for selectively probing imipramine created on ito electrodes modified by au nanoparticles. Talanta 2009, 78, 26–32.
[53]  Maouche, N.; Guergouri, M.; Gam-Derouich, S.; Jouini, M.; Nessark, B.; Chehimi, M.M. Molecularly imprinted polypyrrole films: Some key parameters for electrochemical picomolar detection of dopamine. J. Electroanal. Chem. 2012, 685, 21–27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133