全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

An Analog Multilayer Perceptron Neural Network for a Portable Electronic Nose

DOI: 10.3390/s130100193

Keywords: analog MLP circuit, electronic nose

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study examines an analog circuit comprising a multilayer perceptron neural network (MLPNN). This study proposes a low-power and small-area analog MLP circuit to implement in an E-nose as a classifier, such that the E-nose would be relatively small, power-efficient, and portable. The analog MLP circuit had only four input neurons, four hidden neurons, and one output neuron. The circuit was designed and fabricated using a 0.18 μm standard CMOS process with a 1.8 V supply. The power consumption was 0.553 mW, and the area was approximately 1.36 × 1.36 mm 2. The chip measurements showed that this MLPNN successfully identified the fruit odors of bananas, lemons, and lychees with 91.7% accuracy.

References

[1]  Brezmes, J.; Fructuoso, M.L.L.; Llobet, E.; Vilanova, X.; Recasens, I.; Orts, J.; Saiz, G.; Correig, X. Evaluation of an electronic nose to assess fruit ripness. IEEE Sens. J. 2005, 5, 97–108.
[2]  Blatt, R.; Bonarini, A.; Calabro, E.; Della Torre, M.; Matteucci, M.; Pastorino, U. Lung Cancer Identification by an Electronic based on an Array of MOS Sensors. Proceedings of the International Joint Conference on Neural Networks, Orlando, FL, USA, 12–17 August 2007; pp. 1423–1428.
[3]  Lin, Y.J.; Guo, H.R.; Chang, Y.H.; Kao, M.T.; Wang, H.H.; Hong, R.I. Application of the electronic nose for uremia diagnosis. Sens. Actuators B Chem. 2001, 76, 177–180.
[4]  Wang, L.C.; Tang, K.T.; Kuo, C.T.; Ho, C.L.; Lin, S.R.; Sung, Y.; Chang, C.P. Portable electronic nose system with chemiresistor sensors to detect and distinguish chemical warfare agents. J. Micro/Nanolith. MEMS MOEMS 2010, doi:10.1117/1.3466797.
[5]  Hong, H.K.; Kwon, C.H.; Kim, S.R.; Yun, D.H.; Lee, K.; Sung, Y.K. Portable electronic nose system with gas sensor array and artificial neural network. Sens. Actuators B Chem. 2000, 66, 49–52.
[6]  Boilot, P.; Hines, E.L.; Gardner, J.W.; Pitt, R.; John, S.; Mitchell, J.; Morgan, D.W. Classification of bacateria responsible for ENT and eye infections using the Cyranose system. IEEE Sens. J. 2002, 2, 247–253.
[7]  Koickal, T.J.; Hamilton, A.; Tan, S.L.; Covington, J.A.; Gardner, J.W.; Pearce, T.C. Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Trans. Circuit. Syst. I 2007, 54, 60–73.
[8]  Ng, K.; Boussaid, F.; Bermak, A. A CMOS single-chip gas recognition circuit for metal oxide gas sensor arrays. IEEE Trans. Circuit. Syst. I 2011, 58, 1569–1580.
[9]  Hsieh, H.Y.; Tang, K.T. VLSI implementation of a bio-inspired olfactory spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1065–1073.
[10]  Hopfield, J.J.; Tank, D.W. Computing with neural circuits: A model. Science 1986, 233, 625–633.
[11]  Morrie, T.; Amemiya, Y. An all-analog expandable neural network LSI with on-chip back propagation learning. IEEE J. Solid State Circuits 1994, 29, 1086–1093.
[12]  Lu, C.; Shi, B. Circuit realization of a programmable neuron transfer function and its derivative. Proceedings of the IEEE -INNS-ENNS International Joint Conference on Neural Networks, Como, Italy, 24–27 July 2000; pp. 47–50.
[13]  Gatet, L.; Tap, B.H.; Lescure, M. Analog neural network implementation for a real-time surface classification application. IEEE Sens. J. 2008, 8, 1413–1421.
[14]  Lu, C.; Shi, B.; Chen, L. An on-chip BP learning Neural network with ideal neuron characteristics and learning rate adaption. Analog Integr. Circuit. Signal Process. 2002, 31, 55–62.
[15]  Mead, C.A. Analog VlSI and Neural Systems; Addison-Wesley: Reading, MA, USA, 1989.
[16]  Chible, H. Analog Circuit for Synapse Neural Networks VLSI Implementation, Electronics, Circuits and Systems. Proceedings of the 7th IEEE International Conference on Electronics, Circuits and Systems, Jounieh, Lebanon, 17–20 December 2000; pp. 1004–1007.
[17]  Chiblé, H. OTANPS synapse linear relation multiplier circuit. Leb. Sci. J. 2008, 9, 91–103.
[18]  Coue, D.; Wilson, G. A four quadrant subthreshold mode multiplier for analog neural-network applications. IEEE Trans. Neural Netw. 1996, 7, 1212–1219.
[19]  Lont, J.B.; Guggenbuhl, W. Analog CMOS implementation of a multilayer perceptron with nonlinear synapses. IEEE Trans. Neural Netw. 1992, 3, 457–465.
[20]  Milev, M.; Hrstov, M. Analog implementation of ANN with inherent quadratic nonlinearity of the synapses. IEEE Trans. Neural Netw. 2003, 14, 1187–1200.
[21]  Rumelhart, D.; Hinton, G.; Williams, R. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
[22]  Lu, C.; Shi, B.X.; Chen, L. An on-chip BP learning neural network with ideal neuron characteristics and learning rate adaption. Analog Integr. Circuit. Signal Process. 2002, 31, 55–62.
[23]  Morie, T.; Amemiya, Y. An all-analog expandable neural network LSI with on-chip backpropagation learning. IEEE J. Solid-State Circuits 1994, 29, 1086–1093.
[24]  Tang, K.T.; Chiu, S.W.; Pan, C.H.; Hsieh, H.Y.; Liang, Y.S.; Liu, S.C. Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors 2010, 10, 9179–9193.
[25]  Murray, A.; Edwards, P. Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training. IEEE Trans. Neural Netw. 1994, 5, 792–802.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133