Currently, imaging methods are used to diagnose loosening of endoprosthetic implants, but fail to achieve 100% accuracy. In this study, a passive sensor array which is based on the interaction between magnetic oscillators inside the implant and an excitation coil outside the patient was investigated. The excited oscillators produce sound in the audible range, which varies according to the extent of loosening. By performing several experimental tests, the sensor array was optimized to guarantee reproducible and selective excitation of the sound emission. Variation in the distance between the oscillators demonstrated a definite influence on the quality of the generated sound signal. Furthermore, a numerical design analysis using the boundary element method was generated for consideration of the magnetic field and the selectivity of the oscillators during excitation. The numerical simulation of the coil showed the higher selectivity of a coil with a C-shape compared to a cylindrical coil. Based on these investigations, the passive sensor system reveals the potential for detection of implant loosening. Future aims include the further miniaturization of the oscillators and measurements to determine the sensitivity of the proposed sensor system.
References
[1]
Malchau, H.; Herberts, P.; Eisler, T.; Garellick, G.; Soderman, P. The Swedish total hip replacement register. J. Bone Jt. Surg. Am. 2002, 84-A, 2–20.
[2]
Cuckler, J.M. Unexplained pain after THR: What should I do? Orthopedics 2010, 33, 648.
[3]
Temmermann, O.P.; Raijmakers, P.G.; Berkhof, J.; David, E.F.; Pijpers, R.; Molenaar, M.A.; Hoekstra, O.S.; Teule, G.J.; Heyligers, I.C. Diagnostic accuracy and interobserver variability of plain radiography, subtraction arthrography, nuclear arthrography, and bone scintigraphy in the assessment of aseptic femoral component loosening. Arch. Orthop. Trauma Surg. 2006, 126, 316–323.
[4]
Zhang, Y.; Putnam, A.W.; Heiner, A.D.; Callaghan, J.J.; Brown, T. Reliability of detecting prosthesis/cement interface radiolucencies in total hip arthroplasty. J. Orthop. Res. 2002, 20, 683–687.
[5]
Huang, H.M.; Chiu, C.L.; Yeh, C.Y.; Lin, C.T.; Lin, L.H.; Lee, S.Y. Early detection of implant healing process using resonance frequency analysis. Clin. Oral Implants Res. 2003, 14, 437–443.
[6]
Glauser, R.; Sennerby, L.; Meredith, N.; Rée, A.; Lundgren, A.K.; Gottlow, J.; H?mmerle, C.H.F. Resonance frequency analysis of implants subjected to immediate or early functional occlusal loading—Successful vs. failing implants. Clin. Oral Implants Res. 2003, 15, 428–434.
[7]
Wang, S.; Liu, G.R.; Hoang, K.C.; Guo, Y. Identifiable range of osseointegration of dental implants through resonance frequency analysis. Med. Eng. Phys. 2010, 32, 1094–1106.
[8]
Pattijn, V.; Van Lierde, C.; Van der Perre, G.; Naert, I.; Vander Sloten, J. The resonance frequencies and mode shapes of dental implants: Rigid body behaviour versus bending behaviour. A numerical approach. J. Biomech. 2006, 39, 939–947.
[9]
Pastrav, L.C.; Jaecques, S.V.N.; Jonkers, I.; van der Perre, G.; Mulier, M. In vivo evaluation of a vibration analysis technique for the peri-operative monitoring of the fixation of hip prostheses. J. Orthop. Surg. Res. 2009, 4, 1–10.
[10]
Cristofolini, L.; Varini, E.; Pelgreffi, I.; Cappello, A.; Toni, A. Device to measure intra-operatively the primary stability of cementless hip stems. Med. Eng. Phys. 2006, 28, 475–482.
[11]
Lannocca, M.; Varini, E.; Cappello, A.; Cristofolini, L.; Bialoblocka, E. Intra-operative evaluation of cementless hip implant stability: A prototype device based on vibration analysis. Med. Eng. Phys. 2007, 29, 886–894.
[12]
Rowlands, A.; Duck, F.A.; Cunningham, J.L. Bone vibration measurement using ultrasound: Application to detection of hip prosthesis loosening. Med. Eng. Phys. 2008, 30, 278–284.
[13]
Meredith, N.; Alleyne, D.; Cawley, P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin. Oral Implants Res. 1996, 7, 261–267.
[14]
Meredith, N.; Shagaldi, F.; Alleyne, D.; Sennerby, L.; Cawley, P. The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clin. Oral Implants Res. 1997, 8, 234–243.
[15]
Koh, J.-W.; Yang, J.-H.; Han, J.-S.; Lee, J.-B.; Kim, S.-H. Biomechanical evaluation of dental implants with different surfaces: Removal torque and resonance frequency analysis in rabbits. J. Adv. Prosthodont. 2009, 1, 107–112.
[16]
Park, I.P.; Kim, S.K.; Lee, S.J.; Lee, J.H. The relationship between initial implant stability quotient values and bone-to-implant contact ratio in the rabbit tibia. J. Adv. Prosthodont. 2011, 3, 76–80.
[17]
Rosenstein, A.D.; McCoy, G.F.; Bulstrode, C.J.; McLardy-Smith, P.D.; Cunningham, J.L.; Turner-Smith, A.R. The differentiation of loose and secure femoral implants in total hip replacement using vibrational technique—An anatomical and pilot clinical study. Proc. Inst. Mech. Eng. 1989, 203, 77–81.
[18]
Li, P.L.S.; Jones, N.B.; Gregg, P.J. Vibration analysis in the detection of total hip prosthetic loosening. Med. Eng. Phys. 1996, 18, 556–600.
[19]
Georgiou, A.P.; Cunningham, J.L. Accurate diagnosis of hip prosthesis loosening using a vibrational technique. Clin. Biomech. 2001, 16, 315–323.
[20]
Qi, G.; Mouchon, W.P.; Tan, T.E. How much can a vibrational diagnostic tool reveal in total hip arthroplasty loosening. Clin. Biomech. 2003, 18, 444–458.
[21]
Puers, R.; Catrysse, M.; Vandevoorde, G.; Collier, R.J.; Louridas, E.; Burny, F.; Donkerwolcke, M.; Moulart, F. A telemetry system for the detection of hip prosthesis loosening by vibration analysis. Sens. Actuators A Phys. 2000, 85, 42–47.
[22]
Rieger, P. Implantable Measurement Systems with Wireless Digital Information Transmission. Ph.D. Thesis, Department of Electrical Engineering, University of Kaiserslautern, Kaiserslautern, Germany, 2 February 2001.
[23]
Marschner, U.; Gr?tz, H.; Jettkant, B.; Ruwisch, D.; Woldt, G.; Fischer, W.J.; Clasbrummel, B. Integration of a wireless lock-in measurement of hip prosthesis vibrations for loosening detection. Sens. Actuators A Phys. 2009, 156, 145–154.
[24]
Ruther, C.; Ewald, H.; Mittelmeier, W.; Fritsche, A.; Bader, R.; Kluess, D. A new concept for non-invasive radiation-free detection of implant loosening. J. Biomech. Eng. 2011, 133, 104503.
[25]
Draenert, K.; Draenert, Y. Forschung und Fortbildung in der Chirurgie des Bewegungsapparates 3: Strain-Adaptive Bone Remodelling, 1st ed. ed.; Art and Science München: München, Germany, 1992; pp. 49–56.
[26]
Hao, S.; Taylor, J.T.; Bowen, C.R.; Gheduzzi, S.; Miles, A. Sensing methodology for in vivo stability evaluation of total hip and knee arthroplasty. Sens. Actuators A Phys. 2010, 157, 150–160.
[27]
Ruther, C.; Timm, U.; Ewald, H.; Mittelmeier, W.; Bader, R.; Kluess, D. Detecting sound vibration for the monitoring of implant loosening. Proceedings of the 18th Congress of the European Society of Biomechanics, Lisbon, Portugal, 1–4 July 2012.
[28]
Ruther, C.; Timm, U.; Ewald, H.; Mittelmeier, W.; Bader, R.; Schmelter, R.; Lohrengel, A.; Kluess, D. Current possibilities for detection of loosening of total hip replacements and how intelligent implants could improve diagnostic accuracy. In Recent Advances in Arthroplasty, 1st ed.; Fokter, S.K., Ed.; InTech: Rijeka, Croatia, 2012; pp. 363–386.