A stripped no-core optical fiber with a 125 μm diameter was transformed into a symmetric and unbroken optical fiber that tapers slightly to a 45-μm-diameter waist. The laser light can be easily launched into the no-core optical fiber. The enhanced evanescent wave of the slightly tapered no-core optical fiber can attract nearby 5-μm-diameter polystyrene microparticles onto the surface of the tapered multimode optical fiber within fast flowing fluid and propel the trapped particles in the direction of the light propagation to longer delivery range than is possible using a slightly tapered telecom single-mode optical fiber.
References
[1]
Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970, 24, 156–159.
[2]
Schmidt, B.S.; Yang, A.H.; Erickson, D.; Lipson, M. Optofluidic trapping and transport on solid core waveguides within a microfluidic device. Opt. Express 2007, 15, 14322–14334.
[3]
Yang, A.H.J.; Moore, S.D.; Schmidt, B.S.; Klug, M.; Lipson, M.; Erickson, D. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 2009, 457, 71–75.
[4]
Ahluwalia, B.S.; Subramanian, A.Z.; Hellso, O.G.; Perney, N.M.B.; Sessions, N.P.; Wilkinson, J.S. Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles. IEEE Photon. Technol. Lett. 2009, 21, 1408–1410.
[5]
Helles?, O.G.; L?vhaugen, P.; Subramanian, A.Z.; Wilkinson, J.S.; Ahluwalia, B.S. Surface transport and stable trapping of particles and cells by an optical waveguide loop. Lab Chip 2012, 12, 3436–3440.
[6]
Soltani, M.; Inman, J.T.; Lipson, M.; Wang, M.D. Electro-optofluidics: achieving dynamic control on-chip. Opt. Express 2012, 20, 22314–22326.
[7]
Brambilla, G.; Murugan, G.S.; Wilkinson, J.S.; Richardson, D.J. Optical manipulation of microspheres along a subwavelength optical wire. Opt. Lett. 2007, 32, 3041–3043.
[8]
Murugan, G.S.; Brambilla, G.; Wilkinson, J.S.; Richardson, D.J. Optical propulsion of individual and clustered microspheres along sub-micron optical wires. Jpn. J. Appl. Phys. 2008, 47, 6716–6718.
[9]
Xu, C.; Lei, H.; Zhang, Y.; Li, B. Backward transport of nanoparticles in fluidic flow. Opt. Express 2012, 20, 1930–1938.
[10]
Lei, H.; Xu, C.; Zhang, Y.; Li, B. Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber. Nanoscale 2012, 4, 6707–6709.
[11]
Xu, L.; Li, Y.; Li, B. Size-dependent trapping and delivery of submicro-spheres using a submicrofibre. New J. Phys. 2012, 14, 033020.
[12]
Skelton, S.E.; Sergides, M.; Patel, R.; Karczewska, E.; Maragó, O.M.; Jones, P.H. Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 2512–2520.
[13]
Sheu, F.W.; Wu, H.Y.; Chen, S.H. Using a slightly tapered optical fiber to attract and transport microparticles. Opt. Express 2010, 18, 5574–5579.
[14]
Frawley, M.C.; Petcu-Colan, A.; Truong, V.G.; Chormaic, S.N. Higher order mode propagation in an optical nanofiber. Opt. Commun. 2012, 285, 4648–4654.
[15]
The “Tracker” Software is a Free Video Analysis and Modeling Tool Built on the Open Source Physics (Osp) Java Framework. Available online: http://www.cabrillo.edu/~dbrown/tracker/ (accessed on 20 December 2012).
[16]
Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics; John Wiley & Sons: New York, NY, USA, 1991. Chapter 7; . Chapter 8.