全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

DOI: 10.3390/s130201884

Keywords: silicon carbide, high temperature, wireless, temperature sensing, thermocouple, gas turbine

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance.

References

[1]  Childs, P.R.N.; Greenwood, J.R.; Long, C.A. Review of temperature measurement. Rev. Sci. Instrum. 2000, 71, 2959–2978.
[2]  Magison, E. Temperature measurement-physical principles underlie the four common methods. Ind. Temp. Meas. 2001, 1, 39–41.
[3]  Kinzie, P.A.; Rubin, L.G. Thermocouple temperature measurement. Phys. Today 1973, 26, 52.
[4]  Park, R.M. Manual on the Use of Thermocouples in Temperature Measurement, 4th ed. ed.; American Society for Testing and Materials: Baltimore, MD, USA, 1993; pp. 48–51.
[5]  Bentley, R.E. Temperature and Humidity Measurement. In Handbook of Temperature Measurement; Springer: New York, NY, USA, 1998.
[6]  Baker, B. Precision Temperature Sensing with RTD Circuits. AN687; Microchip Technology Inc.: Tempe, AZ, USA, 1998.
[7]  Kim, J.K.; Kim, J.S.; Shin, Y.; Yoon, Y. A study on the fabrication of an RTD (resistance temperature detector) by using Pt thin film. Korean J. Chem. Eng. 2001, 18, 61–66.
[8]  McGee, T. Principles and Methods of Temperature Measurement; John Wiley & Sons: New York, NY, USA, 1988; p. 203.
[9]  Baker, B. Thermistors in Single Supply Temperatures Sensing Circuits. AN685; Microchip Technology Inc.: Tempe, AZ, USA, 1998.
[10]  Krummenacher, P.; Oguey, H. Smart temperature sensor in CMOS technology. Sens. Actuators A Phys. 1989, 23, 636–638.
[11]  Pertijs, M.A.P.; Niederkorn, A.; Ma, X.; McKillop, B.; Bakker, A.; Huijsing, J.H. A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5 °C from ?50 °C to 120 °C. Solid-State Circuits 2005, 40, 454–461.
[12]  Szajda, K.S.; Sodini, C.G.; Bowman, H.F. A low noise, high resolution silicon temperature sensor. Solid-State Circuits 1996, 31, 1308–1313.
[13]  DeWitt, N. Theory and Practice of Radiation Thermometry; John Wiley & Sons: New York, NY, USA, 1988.
[14]  Mitchell, D.; Kulkarni, A.; Lostetter, A.B.; Schupbach, R.M.; Fraley, J.R.; Waits, R. Development and Testing of Harsh Environment, Wireless Sensor Systems for Industrial Gas Turbines. Proceedings of the ASME Turbo Expo 2009, Orlando, FL, USA, 8–12 June 2009; pp. 774–784.
[15]  Michalski, L.; Eckersdorf, K.; Kucharski, J.; McGhee, J. Temperature Measurement, 2nd ed. ed.; John Wiley & Sons: New York, NY, USA, 2001.
[16]  Seidel, W.; Forster, G.; Christen, W.; Von Feilitzsch, F.; G?bel, H.; Pr?bst, F.; M??bauer, R.L. Phase transition thermometers with high temperature resolution for calorimetric particle detectors employing dielectric absorbers. Phys. Lett. B 1990, 236, 483–487.
[17]  Dils, R.R. High-temperature optical fiber thermometer. J. Appl. Phys. 1983, 54, 1198–1201.
[18]  Adams, B.E. Optical Fiber Thermometry for Use at High Temperatures. In Temperature: Its Measurement and Control in Science and Industry; Schooley, J.F., Ed.; American Institute of Physics: New York, NY, USA, 1992; Volume 6, pp. 739–743.
[19]  Claus, R.O.; Gunther, M.F.; Wang, A.; Murphy, K.A. Exitrinsic Fabry-Perot sensor for strain and crack opening displacement measurement from ?200 to 900 °C. J. Smart Mater. Struct. 1992, 1, 237–242.
[20]  Xiao, H.; Deng, J.; Pickrell, G.; May, R.G.; Wang, A. Single crystal sapphire fiber-based strain sensor for high-temperature applications. J. Lightwave Technol. 2003, 21, 2276–2283.
[21]  Sun, M. Fiberoptic Thermometry Based on Photoluminescent Decay Times. In Temperature: Its Measurement and Control in Science and Industry; Schooley, J.F., Ed.; American Institute of Physics: New York, NY, USA, 1992; Volume 6, pp. 715–719.
[22]  Zhang, Z.; Grattan, K.T.V.; Palmer, A.W. Fiber-optic high temperature sensor based on the fluorescence lifetime of alexandrite. Rev. Sci. Instrum. 1992, 63, 3869–3873.
[23]  Noel, B.W.; Turley, W.D.; Lewis, W.; Tobin, K.W.; Beshears, D.L. Phosphor Thermometry on Turbine-Engine Blades and Vanes. In Temperature: Its Measurement and Control in Science and Industry; Schooley, J.F., Ed.; American Institute of Physics: New York, NY, USA, 1992; Volume 6, pp. 1249–1254.
[24]  Wickersheim, K.A.; Sun, M.; Fiberoptic, H. Thermometry and its applications. J. Microw. Power 1987, 22, 85–94.
[25]  Iida, O.; Iwamura, T.; Hashiba, K.; Kurosawa, Y.A. Fiber Optic Distributed Temperature Sensor for High-Temperature Measurements. In Temperature: Its Measurement and Control in Science and Industry; Schooley, J.F., Ed.; American Institute of Physics: New York, NY, USA, 1992; Volume 6, pp. 745–749.
[26]  Murphy, A.B.; Farmer, A.J.D. Temperature measurement in thermal plasma by Rayleigh scattering. J. Phys. D Appl. Phys. 1992, 25, 634–643.
[27]  Murphy, A.B. Laser-scattering temperature measurements of a free burning arcin nitrogen. J. Phys. D Appl. Phys. 1994, 27, 1492–1498.
[28]  Dakin, J.P.; Pratt, D.J.; Bibby, G.W.; Rosss, J.N. Distributed optical fiber Ramman temperature sensor using a semiconductor light source and detector. Electron. Lett. 1985, 21, 569–570.
[29]  Grate, J.; Martin, S.; White, R. Acoustic Wave Microsensors. Anal. Chem. 1993, 65, 940–948.
[30]  Wold, C.; Sternhagen, J.D.; Mileham, R.D.; Mitzner, K.D.; Galipeau, D.W. Temperature Measurement Using Surface Skimming Bulk Waves. Proceedings of Ultrasonics Symposium, Orlando, FL, USA, 8–11 December 1991; pp. 441–444.
[31]  Reindl, L.M.; Pohl, A.; Scholl, G.; Weigel, R. SAW-based radio sensor systems. Sens. J. 2001, 1, 69–78.
[32]  Scholl, G.; Korden, C.; Riha, E.; Ruppel, C.C.W.; Wolff, U.; Riha, G.; Reindl, L.; Weigel, R. SAW-based radio sensor systems for short-range applications. Microw. Mag. 2003, 4, 68–76.
[33]  Seifert, F.; Weigel, R. SAW-based Radio Sensor and Communication Techniques. Proceedings of 27th European Microwave Conference and Exhibition, Jerusalem, Israel, 8–12 September 1997; pp. 1323–1346.
[34]  Fachberger, R.; Bruckner, G.; Hauser, R.; Reindl, L. Wireless SAW Based High-Temperature Measurement Systems. Proceedings of International Frequency Control Symposium and Exposition 2006, Miami, FL, USA, 4–7 June 2006; pp. 358–367.
[35]  Gong, X.; An, L.; Xu, C. Wireless Passive Sensor Development for Harsh Environment Applications. Proceedings of the 2012 IEEE International Workshop on Antenna Technology (iWAT), Tucson, AZ, USA, 5– 7 March 2012; pp. 140–143.
[36]  Wang, Y.; Jia, Y.; Chen, Q.; Wang, Y. A passive wireless temperature sensor for harsh environment applications. Sensors 2008, 8, 7982–7995.
[37]  DeAnna, R.G. Wireless Telemetry for Gas-Turbine Applications. NASA TM-2000–209815; 2000.
[38]  Harris, G.L. Properties of Silicon Carbide; Institution of Engineering and Technology: London, UK, 1995.
[39]  Lathi, B.P. Modern Digital and Analog Communication Systems, 3nd ed. ed.; Oxford University Press: Oxford, UK, 1998.
[40]  Sklar, B. Digital Communications: Fundamentals and Applications, 2nd ed. ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2001.
[41]  Yang, J.; Fraley, J.R.; Western, B.; Schupbach, M.; Lostetter, A.B. Characterization of SiC JFETs and its application in extreme temperature circuit design. Mater. Sci. Forum 2010, 647, 949–953.
[42]  Sedra, A.S.; Smith, K.C. Microelectronic Circuits, 5th ed. ed.; Oxford University Press: Oxford, UK, 2004.
[43]  Hickman, I. Practical RF Handbook; Elsevier Ltd.: Oxford, UK, 2007.
[44]  Lee, T.H. The Design of CMOS Radio-Frequency Integrated Circuits; Cambridge University Press: Cambridge, UK, 1998.
[45]  McPherson, B.; Garrett, J.; Cilio, E.; Fraley, J.; Hornberger, J.; Western, B.; Mounce, S.; Schupbach, R.M.; Lostetter, A.B. Packaging of an Extreme Environment DC Motor Drive for the NASA Venus Lander. Proceedings of IMAPS 2006—39th International Symposium on Microelectronics, San Diego, CA, USA, 8–12 October 2006; pp. 713–720.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133