In this study, we developed a compact wireless Laplacian electrode module for electromyograms (EMGs). One of the advantages of the Laplacian electrode configuration is that EMGs obtained with it are expected to be sensitive to the firing of the muscle directly beneath the measurement site. The performance of the developed electrode module was investigated in two human interface applications: character-input interface and detection of finger movement during finger Braille typing. In the former application, the electrode module was combined with an EMG-mouse click converter circuit. In the latter, four electrode modules were used for detection of finger movements during finger Braille typing. Investigation on the character-input interface indicated that characters could be input stably by contraction of (a) the masseter, (b) trapezius, (c) anterior tibialis and (d) flexor carpi ulnaris muscles. This wide applicability is desirable when the interface is applied to persons with physical disabilities because the disability differs one to another. The investigation also demonstrated that the electrode module can work properly without any skin preparation. Finger movement detection experiments showed that each finger movement was more clearly detectable when comparing to EMGs recorded with conventional electrodes, suggesting that the Laplacian electrode module is more suitable for detecting the timing of finger movement during typing. This could be because the Laplacian configuration enables us to record EMGs just beneath the electrode. These results demonstrate the advantages of the Laplacian electrode module.
References
[1]
Holzinger, A.; Nischelwitzer, A. People with motor and mobility impairment: Innovative multimodal interfaces to wheelchairs. Lect. Notes Comput. Sci. 2006, 4061, 989–991.
[2]
Nischelwitzer, A.; Sproger, B.; Holzinger, A. Assistive Text Input Methods: 3D-Space Writing and other Text Input Methods for Power Wheelchair Users: Best Practice Examples on the MediaWheelie. In Informationen Nutzbar Machen; Kempter, G., Hellberg, P.V., Eds.; Papst Science Publishers: Lengerich, Germany, 2006; pp. 75–80.
[3]
Nischelwitzer, A.; Sproger, B.; Mahr, M.; Holzinger, A. MediaWheelie: a best practice example for Research in multimodal user interfaces (MUIs). Lect. Notes Comput. Sci. 2006, 4061, 999–1005.
[4]
Holzinger, A.; Stocker, C.; Peischl, B.; Simonic, K.-M. On using entropy for enhancing handwriting preprocessing. Entropy 2012, 11, 2324–2350.
[5]
Stanford, V. Biosignals offer potential for direct interfaces and health monitoring. IEEE Pervasive Comput. Mag. 2004, 3, 99–103.
[6]
Graupe, D.; Magnussen, J.; Beex, A.A. A microprocessor system for multifunctional control of upper-limb prostheses via myoelectric signal identification. IEEE Trans. Automat. Contr. 1978, AC-23, 538–544.
[7]
Jacobson, S.C.; Knutti, D.F.; Johnson, R.T.; Sears, H.H. Development of the Utah artificial arm. IEEE Trans. Biomed. Eng. 1982, BME-29, 249–269.
[8]
Park, E.; Meek, S.G. Adaptive filtering of the electromyographic signal for prosthetic control and force estimation. IEEE Trans. Biomed. Eng. 1995, 42, 1048–1052.
[9]
Peleg, D.; Braiman, E.; Yom-Tov, E.; Inbar, G.F. Classification of finger activation for use in a robotic prosthesis arm. IEEE Trans. Neural Syst. Rehab. Eng. 2002, 10, 290–293.
[10]
Farry, K.A.; Walker, I.D.; Baraniuk, R.G. Myoelectric teleoperation of a complex robotic hand. IEEE Trans. Robotics Autom. 1996, 12, 775–788.
[11]
Fukuda, O.; Tsuji, T.; Kaneko, M.; Otsuka, A. A human-assisting manipulator teleoperated by EMG Signals and arm motions. IEEE Trans. Robotics. Autom. 2003, 19, 210–222.
[12]
Ogino, H.; Arita, J.; Tsuji, T. Wearable pointing device using EMG signals. J. Robot. Mechatron. 2005, 17, 173–180.
[13]
Ichikawa, A. Dialogue languages and persons with disabilities. IEICE Trans. Inf. Syst. 2004, E87-D, 1312–1319.
[14]
Miyagi, M.; Nishida, M.; Horiuchi, Y.; Ichikawa, A. Conference System Using Finger Braille. Proceedings ofGuidelineson Tactile and Haptic Interactions, GOTHI 2005, Sasukatchewan, Canada, 24–26 October 2005; pp. 28–31.
[15]
Ueno, A.; Uchikawa, Y.; Noshiro, M. A Capacitive Sensor System for Measuring Laplacian Electromyogram through Cloth: A Pilot Study. Proceedings of 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2007, Lyon, France, 22–26 August 2007; pp. 5731–5734.
[16]
Hjorth, B. An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroenceph. Clin. Neurophysiol. 1975, 39, 526–530.
[17]
Reucher, H.; Rau, G.; Silny, J. Spatial filtering of noninvasive multielectrode EMG. I. Introduction to measuring technique and applications. IEEE Trans. Biomed. Eng. 1987, 34, 98–105.
[18]
Reucher, H.; Silny, J.; Rau, G. Spatial filtering of noninvasive multielectrode EMG. II. Filter performance in theory and modeling. IEEE Trans. Biomed. Eng. 1987, 34, 106–113.
MacKay, D.M. On-line source-density computation with a minimum of electrodes. Electroencephalogr. Clin. Neurophysiol. 1983, 56, 696–698.
[23]
Mori, H.; Aso, H.; Makino, S. Robust n-gram model of Japanese character and its application to document recognition. IEICE Trans. Inf. Syst. 1997, E79-D, 471–476.
[24]
Mori, H.; Iwabuchi, S.; Kasuya, H. A fast scanning input method based on multiple cursors. Trans. Human Interface Soc. 2003, 5, 135–141. in Japanese.
[25]
Middaugh, S.J.; Kee, W.G.; Nicholson, J.A. Muscle Overuse and Posture as Factors in the Development and Maintenance of Chronic Musculoskeletal Pain. In Psychological Vulnerability to Chronic Pain; Grzesiak, R.C., Ciccone, D.S., Eds.; Springer: New York, NY, USA, 1994; pp. 55–89.
[26]
Pepper, E.; Wilson, V.S.; Taylor, W.; Pierce, A.; Bender, K.; Tibbetts, V. Repetitive strain injury and electromyography: Applications in physical therapy. Phys. Ther. Prod. 1994, 5, 17–22.
[27]
Matsuda, Y.; Sakuma, I.; Jimbo, Y.; Kobayashi, E.; Arafune, T.; Isomura, T. Development of finger Braille teaching system Teaching of dotting finger and position using speech recognition. Trans. Human Interface Soc. 2005, 7, 379–390. in Japanese.