全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

An Automatic Weighting System for Wild Animals Based in an Artificial Neural Network: How to Weigh Wild Animals without Causing Stress

DOI: 10.3390/s130302862

Keywords: sensor network, habitat monitoring, neural networks, computational intelligence

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper proposes a novel and autonomous weighing system for wild animals. It allows evaluating changes in the body weight of animals in their natural environment without causing stress. The proposed system comprises a smart scale designed to estimate individual body weights and their temporal evolution in a bird colony. The system is based on computational intelligence, and offers valuable large amount of data to evaluate the relationship between long-term changes in the behavior of individuals and global change. The real deployment of this system has been for monitoring a breeding colony of lesser kestrels ( Falco naumanni) in southern Spain. The results show that it is possible to monitor individual weight changes during the breeding season and to compare the weight evolution in males and females.

References

[1]  Newton, I. Lifetime Reproduction in Birds; Academic Press: London, UK, 1992.
[2]  Trivers, R.L. Parent-offspring conflict. Am. Zool. 1974, 14, 249–264.
[3]  Schlomer, G.L.; Ellis, B.J.; Garber, J. Mother–child conflict and sibling relatedness: A test of hypotheses from parent–offspring conflict theory. J. Res. Adolesc. 2010, 20, 287–306.
[4]  Maynard Smith, J.; Price, G.R. The logic of animal conflict. Nature 1973, 246, 15–18.
[5]  Kokko, H.; Wong, B.B.M. What determines sex roles in mate searching? Evolution 2007, 61, 1162–1175.
[6]  Gauthier-Clerc, M.; Le Maho, Y. Beyond bird marking with rings. J. Neth. Ornithol. Union 2001, 81, 221–230.
[7]  Limmer, B.; Becker, P.H. The relative role of age and experience in determining variation in body mass during the early breeding career of the common tern (sterna hirundo). J. Behav. Ecol. Sociobiol. 2007, 61, 1885–1896.
[8]  Boisvert, M.J.; Sherry, D.F. A system for the automated recording of feeding behavior and body weight. Physiol. Behav. 2000, 71, 147–151.
[9]  Green, A.J. Mass/Length residuals: Measures of body condition or generators of spurious results? Ecology 2001, 82, 1473–1483.
[10]  Biebach, H.; Friedrich, W.; Heine, G. Interaction of bodymass, fat, foraging and stopover period in trans-sahara migrating passerine birds. Oecologia 1986, 69, 370–379.
[11]  Hill, G.E. Female house finches prefer colourful males: Sexual selection for a condition-dependent trait. Anim. Behav. 1990, 40, 563–572.
[12]  Lumeij, J.T.; Remple, J.D. Plasma urea, creatinine and uric acid concentrations in relation to feeding in peregrine falcons (Falco peregrinus). Avian Pathol. 1991, 20, 79–83.
[13]  Cook, D.J. Making sense of sensor data. IEEE Perva. Comput. 2007, 6, 105–108.
[14]  Sridhar, P. Hierarchical aggregation and intelligent monitoring and control in fault-tolerant wireless sensor networks. IEEE Syst. J. 2007, 1, 38–54.
[15]  Garcia-Sanchez, A.-J.; Garcia-Sanchez, F.; Losilla, F.; Kulakowski, P.; Garcia-Haro, J.; Rodríguez, A.; López-Bao, J.-V.; Palomares, F. Wireless Sensor Network deployment for monitoring wildlife passages. Sensors 2010, 10, 7236–7262.
[16]  Handcock, R.N.; Swain, D.L.; Bishop-Hurley, G.J.; Patison, K.P.; Wark, T.; Valencia, P.; Corke, P.; O'Neill, C.J. Monitoring animal behaviour and environmental interactions using Wireless Sensor Networks, GPS collars and satellite remote sensing. Sensors 2009, 9, 3586–3603.
[17]  Valente, J.; Sanz, D.; Barrientos, A.; Cerro, J.; Ribeiro, A.; Rossi, C. An air-ground Wireless Sensor Network for crop monitoring. Sensors 2011, 11, 6088–6108.
[18]  Carullo, A.; Corbellini, S.; Parvis, M.; Vallan, A. A Wireless Sensor Network for cold-chain monitoring. IEEE Trans. Instrum. Meas. 2009, 58, 1405–1411.
[19]  Hwang, J.; Shin, C.; Yoe, H. Study on an agricultural environment monitoring server system using Wireless Sensor Networks. Sensors 2010, 10, 11189–11211.
[20]  Farshchi, S.; Pesterev, A.; Nuyujukian, P.H.; Mody, I.; Judy, J.W. Bi-Fi: An embedded sensor/system architecture for remote biological monitoring. IEEE Trans. Inform. Technol. Biomed. 2007, 11, 611–618.
[21]  Yang, M.-H.; Kriegman, D.J.; Ahuja, N. Detecting faces in images: A survey. IEEE Trans. Patt. Anal. Mach. Intell. 2002, 24, 34–58.
[22]  Lu, W.-Z.; Wang, W.-J. Potential assessment of the “support vector machine” method in forecasting ambient air pollutant trends. Chemosphere 2005, 59, 693–701.
[23]  Ammar, K.; Khalil, A.; McKee, M.; Kaluarachchi, J. Bayesian deduction for redundancy detection in groundwater quality monitoring networks. Water Resour. Res. 2008, doi:10.1029/2006WR005616.
[24]  Hadjiiski, L.; Hopke, P. Application of artificial neural networks to modeling and prediction of ambient ozone concentrations. J. Air Waste Manage. Assoc. 2008, 50, 894–901.
[25]  Manel, S.; Dias, J.-M.; Ormerod, S.J. Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: A case study with a Himalayan river bird. Ecolo. Model. 1999, 120, 337–347.
[26]  Mastrorillo, S.; Lek, S.; Dauba, F.; Belaud, A. The use of artificial neural networks to predict the presence of small-bodied fish in a river. Freshwater Biol. 1997, 38, 237–246.
[27]  Kohonen, T. The self-organizing map. IEEE Proc. 1990, 78, 1464–1480.
[28]  Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.
[29]  Jang, R.J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685.
[30]  Kankal, M.; Akpinar, A.; K?mürcü, M.T.; ?z? ahin, T.?. Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables. Appl. Energ. 2011, 88, 1927–1939.
[31]  Li, Z.; Yan, X.; Yuan, C.; Zhao, J.; Peng, Z. Fault detection and diagnosis of a gearbox in marine propulsion systems using bispectrum analysis and artificial neural networks. J. Mar. Sci. Appl. 2011, 10, 17–24.
[32]  Cramp, S. Handbook of the Birds of Europe, the Middle East and North Africa; Oxford University Press: New York, NY, USA, 1980.
[33]  Biber, J.P. Action plan for the conservation of western lesser kestrel falco naumanni populations. Int. Counc. Bird Preserv. Study Rep. 1990, 41, 1–46.
[34]  Bijleveld, M. Birds of Prey in Europe; Macmillan Press: London, UK, 1974.
[35]  Garzón, J. Birds of Prey in Spain, the Present Situation. Proceedings of the World Conference on Birds of Prey, Vienna, Austria, 1–3 October 1975; pp. 159–170.
[36]  González, J.L.; Merino, M. El Cernícalo Primilla (Falco Naumanni) En La Península Ibérica. Situación, Problemática Y Aspectos Biológicos; Turkana Libros: Madrid, Spain, 1990.
[37]  Peet, N.B.; Gallo-Orsi, U. Action Plan For The Lesser Kestrel Falco Naumanni; Cambridge, UK: Council of Europe and BirdLife International, 2000.
[38]  Rodríguez, C.; Bustamante, J. The effect of weather on Lesser Kestrel breeding success: Can climate change explain historical population declines? J. Animal Ecol. 2003, 72, 793–810.
[39]  Lifewatch Magazine. Available online http://lifewatch.unisalento.it/documents/10157/22861/LifeWatch.pdf (accessed on 27 February 2013).
[40]  Polastre, J.; Szewczyk, R.; Culler, D. Telos: Enabling Ultra-Low Power Wireless Research. Proceedings of the Fourth International Symposium on Information Processing in Sensor Networks, Los Angeles, CA, USA, 25–27 April 2005; pp. 364–369.
[41]  Larios, D.F.; Rodríguez, C.; Barbancho, J.; Baena, M.; Simón, F.; Marín, J.; León, C.; Bustamante, J. Computational Intelligence Applied to Monitor Bird Behavior. Proceedings of the DCNET/ICE-B/OPTICS 2012, Rome, Italy, 24–27 July 2012; pp. 23–32.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133