全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

An Aerial-Ground Robotic System for Navigation and Obstacle Mapping in Large Outdoor Areas

DOI: 10.3390/s130101247

Keywords: autonomous navigation, cooperative perception, obstacle avoidance, outdoor mapping, collaborative robotics, UGV, UAV

Full-Text   Cite this paper   Add to My Lib

Abstract:

There are many outdoor robotic applications where a robot must reach a goal position or explore an area without previous knowledge of the environment around it. Additionally, other applications (like path planning) require the use of known maps or previous information of the environment. This work presents a system composed by a terrestrial and an aerial robot that cooperate and share sensor information in order to address those requirements. The ground robot is able to navigate in an unknown large environment aided by visual feedback from a camera on board the aerial robot. At the same time, the obstacles are mapped in real-time by putting together the information from the camera and the positioning system of the ground robot. A set of experiments were carried out with the purpose of verifying the system applicability. The experiments were performed in a simulation environment and outdoor with a medium-sized ground robot and a mini quad-rotor. The proposed robotic system shows outstanding results in simultaneous navigation and mapping applications in large outdoor environments.

References

[1]  Choset, H.; Lynch, K.; Hutchinson, S.; Kantor, G.; Burgard, W.; Kavraki, L.; Thrun, S. Principles of Robot Motion: Theory, Algorithms, and Implementations; MIT Press: Boston, MA, USA, 2005.
[2]  Krotkov, E. Position Estimation and Autonomous Travel by Mobile Robots in Natural Terrain. Kent Forum Book, 1997. Available online: http://www.ri.cmu.edu/pub_files/pub3/krofkov_eric_1997_2/krotkov_eric_1997_2.pdf (accessed on 3 January 2013).
[3]  Moseley, M.B.; Grocholsky, B.P.; Cheung, C.; Singh, S. Integrated long-range UAV/UGV collaborative target tracking. Proc. SPIE 2009, 7332, doi:10.1117/12.820289.
[4]  Li, W.; Zhang, T.; Klihnlenz, K. A vision-guided autonomous quadrotor in an air-ground multi-robot system. Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 2980–2985.
[5]  Chaimowicz, L.; Kumar, V. Aerial shepherds: Coordination among uavs and swarms of robots. In Distributed Autonomous Robotic Systems 6; Springer: Tokyo, Japan, 2007; pp. 243–252.
[6]  Ishikawa, S.; Kuwamoto, H.; Ozawa, S. Visual navigation of an autonomous vehicle using white line recognition. IEEE Trans. Patt. Anal. Mach. Intell. 1988, 10, 743–749.
[7]  Matsumoto, Y.; Inaba, M.; Inoue, H. Visual navigation using view-sequenced route representation. Proceedings of 1996 IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996; pp. 83–88.
[8]  Dao, N.X.; You, B.J.; Oh, S.R. Visual navigation for indoor mobile robots using a single camera. Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), Edmonton, AB, Canada, 2–6 August 2005; pp. 1992–1997.
[9]  Cherubini, A.; Chaumette, F. Visual navigation with obstacle avoidance. Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, 25–30 September 2011; pp. 1593–1598.
[10]  Grocholsky, B.; Dille, M.; Nuske, S. Efficient target geolocation by highly uncertain small air vehicles. Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, 25–30 September 2011; pp. 4947–4952.
[11]  Dille, M.; Grocholsky, B.; Nuske, S. Persistent Visual Tracking and Accurate Geo-Location of Moving Ground Targets by Small Air Vehicles. Proceedings of AIAA Infotech@Aerospace Conference, St. Louis, MO, USA, 29–31 March 2011.
[12]  Rao, R.; Kumar, V.; Taylor, C. Visual servoing of a UGV from a UAV using differential flatness. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, 27 October–1 November 2003; pp. 743–748.
[13]  Elfes, A.; Bergerman, M.; Carvalho, J.R.H.; de Paiva, E.C.; Ramos, J.J.G.; Bueno, S.S. Air-ground robotic ensembles for cooperative applications: Concepts and preliminary results. Proceedings of 2nd International Conference on Field and Service Robotics, Pittsburgh, PA, USA, 29–31 August 1999; pp. 75–80.
[14]  Vidal, R.; Rashid, S.; Sharp, C.; Shakernia, O.; Kim, J.; Sastry, S. Pursuit-evasion games with unmanned ground and aerial vehicles. Proceedings of IEEE International Conference on Robotics and Automation, Seoul, Korea, 21–26 May 2001; pp. 2948–2955.
[15]  Phan, C.; Liu, H. A cooperative UAV/UGV platform for wildfire detection and fighting. Proceedings of Asia Simulation Conference: 7th International Conference on System Simulation and Scientific Computing, Beijing, China, 10–12 October 2008; pp. 494–498.
[16]  Chaimowicz, L.; Grocholsky, B.; Keller, J.F.; Kumar, V.; Taylor, C.J. Experiments in Multirobot Air-Ground Coordination. Proceedings of the 2004 International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2004; pp. 4053–4058.
[17]  MacArthur, E.Z.; MacArthur, D.; Crane, C. Use of cooperative unmanned air and ground vehicles for detection and disposal of mines. Proc. SPIE 2005, 5999, 94–101.
[18]  Valente, J.; Barrientos, A.; Martinez, A.; Fiederling, C. Field tests with an aerial–ground convoy system for collaborative tasks. Proceedings of 8th Workshop de RoboCity2030-II: Robots Exteriores, Madrid, Spain, 2 December 2010; pp. 233–248.
[19]  Snyder, J.P. Map Projections: A Working Manual. Supersedes USGS Bulletin 1532; U.S. Geological Survey, U.S. Government Printing Office: Washington, DC, USA, 1987.
[20]  Gadeyne, K.; BFL: Bayesian Filtering Library. 2001. Available online: http://www.orocos.org/bfl (accessed on 3 January 2012).
[21]  Garzón, M.; Valente, J.; Zapata, D.; Chil, R.; Barrientos, A. Towards a ground navigation system based in visual feedback provided by a mini UAV. Proceedings of the IEEE Intelligent Vehicles Symposium Workshops, Alcal de Henares, Spain, 3–7 June 2012.
[22]  Reynolds, C.W. Steering Behaviors For Autonomous Characters. Proceedings of Game Developers Conference, San Jose, CA, USA, 15–19 March 1999; pp. 763–782.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133