全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A Solid-Contact Ion Selective Electrode for Copper(II) Using a Succinimide Derivative as Ionophore

DOI: 10.3390/s130404367

Keywords: copper, solid-contact electrode, PVC membrane, potentiometry, selectivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

All-solid-state sensors with polyvinyl chloride (PVC)-based membranes using off-the-shelf N-hydroxysuccinimide (NHS) and succinimide (Succ) ionophores were prepared using DOP (dioctyl phthalate) and NPOE ( ortho-nitrophenyloctyl ether) as plasticizers. Good responses were obtained when NHS was used. The potentiometric response of the proposed electrode is independent of pH over the range 2–6. The electrode shows a fast response time of 0.25 s. The electrode exhibits a Super-Nernstian response, with 37.5 mV/decade, with a potentiometric detection limit of 4.4 μM. The proposed sensor revealed good selectivity towards a group of transition metal ions.

References

[1]  Durukan, I.; ?ahin, C.A.; Bekta?, S. Determination of copper traces in water samples by flow injection-flame atomic absorption spectrometry using a novel solidified floating organic drop microextraction method. Microchem. J. 2011, 98, 215–219.
[2]  Schwarcz, J.; Schwarcz, J.A. The Fly in the Ointment: 70 Fascinating Commentaries on the Science of Everyday Life; ECW Press: Toronto, Canada, 2004; p. 180.
[3]  Jamaluddin, A.M.; Saifuddin, M.; Jannat, T.; Bhattacharjee, S.C. A Rapid Spectrophotometric Method for the Determination of Copper in Real, Environmental, Biological and Soil Samples Using 1-(2-pyridylazo)-2-naphthol. Green Page, 2010. Available online: http://www.eco-web.com/edi/100412.html (accessed on the 8 February 2013).
[4]  Shishehbore, M.R.; Nasirizadeh, N.; Haji, S.A.M.; Tabatabaee, M. Spectrophotometric determination of trace copper after preconcentration with 1,5- diphenylcarbazone on microcrystalline naphthalene. Can. J. Anal. Sci. Spectrosc. 2005, 50, 130–134.
[5]  Jignesh, S.; Vineeta, K.; Abhay, S.; Vilasrao, K. Analytical methods for estimation of metals. Int. J. Res. Pharm. Chem. 2012, 2, 146–163.
[6]  Ahmad, P.H.; Karimi1, M.; Moniri, E.; Soudi, H. Development of a sensitive spectrophotometeric method for determination of copper. Afr. J. Pure Appl. Chem. 2008, 2, 096–099.
[7]  Karthikeyan, J.; Naik, P.P.; Shetty, A.N. A rapid extractive spectrophotometric determination of copper(II) in environmental samples, alloys, complexes and pharmaceutical samples using 4-[N, N(dimethyl)amino]benzaldehydethiosemicarbazone. Environ. Monit. Assess. 2010, 176, 419–426.
[8]  ?krlíková, J.; Andruch, V.; Balogh, I.S.; Kocúrová, L.; Nagy, L.; Baze, Y. A novel, environmentally friendly dispersive liquid–liquid microextraction procedure for the determination of copper. Microchem. J. 2011, 99, 40–45.
[9]  Shrivas, K. Monitoring of copper level in water and soil samples by using liquid–liquid extraction. Environ. Monit. Assess. 2010, 168, 315–319.
[10]  Abbasi, S.; Khani, H.; Tabaraki, R. Determination of ultra trace levels of copper in food samples by a highly sensitive adsorptive stripping voltammetric method. Food Chem. 2010, 123, 507–512.
[11]  Leelasattarathkul, T.; Liawruangrath, S.; Rayanakorn, M.; Oungpipat, W.; Liawruangrath, B. The development of sequential injection analysis coupled with lab-on-valve for copper determination. Talanta 2006, 70, 656–660.
[12]  Kaur, V.; Malik, A.K. Development of solid phase microextraction-high performance liquid chromatographic method for the determination of copper(II) in environmental samples using morpholine-4-carbodithioate. Ann. Chim. 2007, 97, 1279–1290.
[13]  Rohani, T.; Taher, M.A. A new method for application of the water-soluble dye SPADNS in a carbon paste electrode for determination of trace amounts of copper. J. AOAC Int. 2008, 91, 1478–1482.
[14]  Janegitz, B.C.; Marcolino-Junior, L.H.; Campana-Filho, S.P.; Faria, R.C.; Fatibello-Filho, O. Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan. Sens. Actuators B Chem. 2009, 142, 260–266.
[15]  Meledge, E.M.M.-M. Chalcogenide matrix doped with metal impurities for environmental monitoring. J. Non-Oxide Glass. 2011, 3, 67–76.
[16]  Cartas, R.; Mimendia, A.; Legin, A.; del Valle, M. Multiway processing of data generated with a potentiometric electronic tongue in a SIA system. Electroanalysis 2011, 23, 953–961.
[17]  Mear, F.O.; Essi, M.; Guimon, M.-F.; Pradel, A. Processing and characterization of thin film Cux(Ge28Se60Sb12)1-x ion selective electrode membrane. Chalcogenide Lett. 2008, 5, 117–124.
[18]  Zanganeh, A.R.; Amini, M.K. Polypyrrole-Modified electrodes with induced recognition sites for potentiometric and voltammetric detection of copper(II) ion. Sens. Actuators B Chem. 2008, 135, 358–365.
[19]  Pandey, P.C. Copper(II) ion sensor based on electropolymerizedundoped-polyindole modified electrode. Sens. Actuators B Chem. 1999, 54, 210–214.
[20]  Fakhari, A.R.; Raji, T.A.; Naeimi, H. Copper-selective PVC membrane electrodes based on salens as carriers. Sens. Actuators B Chem. 2005, 104, 317–323.
[21]  Mashhadizadeh, M.H.; Mostafavi, A.; Razavi, R.; Shamsipur, M. Highly selective Cu(II) PVC membrane electrode based on 3,6,9,14-tetrathiabicyclo[9.2.1]tetradeca-11,13-diene as a suitable neutral ionophore. Sens. Actuators B Chem. 2002, 86, 222–228.
[22]  Shamsipur, M.; Javanbakht, M.; Mousavi, M.F.; Ganjali, M.R.; Lippolis, V.; Garau, A.; Tei, T. Copper(II)-selective membrane electrodes based on some recently synthesized mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit. Talanta 2001, 55, 1047–1054.
[23]  de Oliveira, I.A.M.; Pla-Roca, M.; Escriche, L.; Casabó, J.; Zine, N.; Bausells, J.; Teixidor, F.; Crespo, E.; Errachid, A.; Samitier, J. Novel all-solid-state copper(II) microelectrode based on a dithiomacrocycle as a neutral carrier. Electrochim. Acta 2006, 51, 5070–5074.
[24]  de Oliveira, M.I.A.; Pla-Roca, M.; Escriche, L.; Casabó, J.; Zine, N.; Bausells, J.; Samitier, J.; Errachid, A. New membrane for copper-selective electrode incorporating a new thiophosphoril-containing macrocycle as neutral carrier. Mater. Sci. Eng. 2006, 26, 394–398.
[25]  Pick, J.; Tóth, K.; Pungor, E. A new heterogeneous solid-state copper(II)-selective electrode. Anal. Chim. Acta 1972, 61, 169–175.
[26]  Shamsipur, M.; Mizani, F.; Saboury, A.A.; Sharghi, H.; Khalifeh, R. Highly selective and sensitive membrane sensors for copper(II) ion based on a new benzo-substituted macrocyclicdiamide6,7,8,9,10-hexahydro-2H-1,13,4,7,10-benzodioxatriazacyclopentadecine-3,11 (4H,12H)-dione. Electroanalysis 2007, 19, 587–596.
[27]  Bakker, E.; Pretsch, E. Potentiometric sensors for trace-level analysis. Trends Anal. Chem. 2005, 24, 199–207.
[28]  Lai, C.-Z.; Joyer, M.M.; Fierke, M.A.; Petkovich, N.D.; Stein, A.; Bühlmann, P. Subnanomolar detection limit application of ion-selective electrodes with three-dimensionally ordered macroporous (3DOM) carbon solid contacts. J. Solid State Electrochem. Curr. Res. Dev. Sci. Technol. 2009, 13, 123–128.
[29]  Wang, K.; Xu, J.-J.; Tang, K.S.; Chen, H.Y. Solid-contact potentiometric sensor for ascorbic acid based on cobalt phthalocyanine nanoparticles as ionophores. Talanta 2005, 67, 798–805.
[30]  Sadeghi, S.; Fathi, F. Polymeric membrane coated graphite cesium selective electrode based on di-tert-butyldibenzo-18-crown-6. J. Incl. Phenom. Macrocycl. Chem. 2010, 67, 91–98.
[31]  Cretescu, I.; Sibiescu, D.; Rosca, I.; Tutulea, D. Organic Compounds as Ligands in Ion Selective Electrodes for Heavy Metals Monitoring. Proceeding of Specific Methods for Food Safety and Quality Satellite Event of 9th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Belgrade, Serbia, 23 September 2008; pp. 119–124.
[32]  Baró-Romà, J.; Sánchez, J.; del Valle, M.; Alonso, J.; Bartrolí, J. Construction and development of ion-selective electrodes responsive to anionic surfactants. Sens. Actuators B 1993, 15–16, 179–183.
[33]  Gallardo, J.; Alegret, S.; de Román, M.; Mu?oz, R.; Hernández, P.R.; Leija, L.; del Valle, M. Determination of ammonium ion employing an electronic tongue based on potentiometric sensors. Anal. Lett. 2003, 14, 2893–2908.
[34]  Wang, J. Analytical Electrochemistry, 2nd ed. ed.; Wiley-VCH: New-York, NY, USA, 2000.
[35]  Inczèdy, J.; Lengyel, T.; Ure, A.M. Compendium of Analytical Nomenclature IUPAC, 3rd ed. ed.; Blackwell Science: Oxford, UK, 1998. Chapter 8.
[36]  Singh, L.P.; Bhatnagar, J.M. Copper(II) selective electrochemical sensor based on Schiff Base complexes. Talanta 2004, 64, 313–319.
[37]  Gismera, M.J.; Mendiola, M.A.; Procopio, J.R.; Sevilla, M.T. Copper potentiometric sensors based on copper complexes containing thiohydrazone and thiosemicar-bazone ligands. Anal. Chim. Acta 1999, 385, 143–149.
[38]  Gupta, V.K.; Jain, A.K.; Maheshwari, G.; Lang, H.; Ishtaiwi, Z. Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sens. Actuators B 2006, 117, 99–106.
[39]  Aghaie, M.; Giahi, M.; Zawari, M. Manganese(II) ion-selective membrane electrode based on N-(2-picolinamido ethyl)-Picolinamide as neutral carrier. Bull. Korean Chem. Soc. 2010, 31, 2980–2984.
[40]  Umezawa, Y.; Umezawa, K.; Sato, H. Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting KA,Bp°t values. Pure Appl. Chem. 1995, 67, 507–518.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133