We report the application of a microfluidic device for semi-contact temperature measurement in picoliter volumes of aqueous media. Our device, a freely positionable multifunctional pipette, operates by a hydrodynamic confinement principle, i.e., by creating a virtual flow cell of micrometer dimensions within a greater aqueous volume. We utilized two fluorescent rhodamines, which exhibit different fluorescent responses with temperature, and made ratiometric intensity measurements. The temperature dependence of the intensity ratio was calibrated and used in a model study of the thermal activation of TRPV1 ion channels expressed in Chinese hamster ovary cells. Our approach represents a practical and robust solution to the specific problem of measuring temperature in biological experiments in vitro, involving highly localized heat generation, for example with an IR-B laser.
References
[1]
Kopp, M.U.; de Mello, A.J.; Manz, A. Chemical amplification: Continuous-flow PCR on a chip. Science 1998, 280, 1046–1048.
[2]
Vigolo, D.; Rusconi, R.; Stone, H.A.; Piazza, R. Thermophoresis: Microfluidics characterization and separation. Soft Matter 2010, 6, 3489–3493.
[3]
Bargiel, S.; Górecka-Drzazga, A.; Dziuban, J.A. A micromachined system for the separation of molecules using thermal field-flow fractionation method. Sens. Actuators A Phys. 2004, 110, 328–335.
[4]
Hirano, K.; Ishii, R.; Imayou, H.; Nishioka, M.; Matsuzawa, Y.; Katsura, S.; Mizuno, A. Application of Local Temperature Control for DNA Micromanipulation. Proceeding of the Seventh International Symposium on Micro Machine and Human Science, Nagoya, Japan, 2–4 October 1996; pp. 177–182.
[5]
Chabala, L.; Sheridan, R.; Hodge, D.; Power, J.; Walsh, M. A microscope stage temperature controller for the study of whole-cell or single-channel currents. Pflugers Arch. 1985, 404, 374–377.
[6]
Childs, P.R.N.; Greenwood, J.R.; Long, C.A. Review of temperature measurement. Rev. Sci. Instrum. 2000, 71, 2959–2978.
[7]
Beakley, W.R. The design of thermistor thermometers with linear calibration. J. Sci. Instrum. 1951, 28, 176–179.
[8]
Barber, C.R. Platinum resistance thermometers of small dimensions. J. Sci. Instrum. 1950, 27, 47–49.
[9]
Tsutsui, M.; Kawai, T.; Taniguchi, M. Unsymmetrical hot electron heating in quasi-ballistic nanocontacts. Sci. Rep. 2012, 2, 1–7.
[10]
Markstrom, M.; Gunnarsson, A.; Orwar, O.; Jesorka, A. Dynamic microcompartmentalization of giant unilamellar vesicles by sol gel transition and temperature induced shrinking/swelling of poly(n-isopropyl acrylamide). Soft Matter 2007, 3, 587–595.
[11]
Allen, P.B.; Rodriguez, I.; Kuyper, C.L.; Lorenz, R.M.; Spicar-Mihalic, P.; Kuo, J.S.; Chiu, D.T. Selective electroless and electrolytic deposition of metal for applications in microfluidics: Fabrication of a microthermocouple. Anal. Chem. 2003, 75, 1578–1583.
[12]
Millingen, M.; Bridle, H.; Jesorka, A.; Lincoln, P.; Orwar, O. Ligand-specific temperature-dependent shifts in EC50 values for the GABAA receptor. Anal. Chem. 2007, 80, 340–343.
[13]
Beckman, P.; Roy, R.P.; Velidandla, V.; Capizzani, M. An improved fast-response microthermocouple. Rev. Sci. Instrum. 1995, 66, 4731–4733.
[14]
Yao, J.; Liu, B.; Qin, F. Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies. Biophys. J. 2009, 96, 3611–3619.
[15]
Ross, D.; Locascio, L.E. Fluorescence thermometry in microfluidics. AIP Conf. Proc. 2003, 684, 1051–1056.
[16]
Ross, D.; Gaitan, M.; Locascio, L.E. Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal. Chem. 2001, 73, 4117–4123.
[17]
Zeeb, V.; Suzuki, M.; Ishiwata, S. A novel method of thermal activation and temperature measurement in the microscopic region around single living cells. J. Neurosci. Method. 2004, 139, 69–77.
[18]
Barilero, T.; Le Saux, T.; Gosse, C.; Jullien, L. Fluorescent thermometers for dual-emission-wavelength measurements: Molecular engineering and application to thermal imaging in a microsystem. Anal. Chem. 2009, 81, 7988–8000.
[19]
Glawdel, T.; Almutairi, Z.; Wang, S.; Ren, C. Photobleaching absorbed rhodamine b to improve temperature measurements in PDMS microchannels. Lab Chip 2009, 9, 171–174.
[20]
Erickson, D.; Sinton, D.; Li, D. Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Lab Chip 2003, 3, 141–149.
[21]
Shah, J.J.; Gaitan, M.; Geist, J. Generalized temperature measurement equations for rhodamine b dye solution and its application to microfluidics. Anal. Chem. 2009, 81, 8260–8263.
[22]
Toepke, M.W.; Beebe, D.J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 2006, 6, 1484–1486.
[23]
Ainla, A.; Jeffries, G.D.M.; Brune, R.; Orwar, O.; Jesorka, A. A multifunctional pipette. Lab Chip 2012, 12, 1255–1261.
[24]
Arbeloa, I.L.; Rohatgi-Mukherjee, K.K. Solvent effects on the photophysics of the molecular forms of rhodamine B. Internal conversion mechanism. Chem. Phys. Lett. 1986, 129, 607–614.
[25]
Fu, R.; Xu, B.; Li, D. Study of the temperature field in microchannels of a pdms chip with embedded local heater using temperature-dependent fluorescent dye. Int. J. Therm. Sci. 2006, 45, 841–847.
[26]
Gui, L.; Ren, C.L. Temperature measurement in microfluidic chips using photobleaching of a fluorescent thin film. Appl. Phys. Lett. 2008, 92, doi:10.1063/1.2828717.
[27]
Sakakibara, J.; Hishida, K.; Maeda, M. Measurements of thermally stratified pipe flow using image-processing techniques. Exp. Fluid. 1993, 16, 82–96.
[28]
Sakakibara, J.; Adrian, R.J. Whole field measurement of temperature in water using two-color laser induced fluorescence. Exp. Fluid. 1999, 26, 7–15.
[29]
Robinson, T.; Schaerli, Y.; Wootton, R.; Hollfelder, F.; Dunsby, C.; Baldwin, G.; Neil, M.; French, P.; Demello, A. Removal of background signals from fluorescence thermometry measurements in PDMS microchannels using fluorescence lifetime imaging. Lab Chip 2009, 9, 3437–3441.
[30]
Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, JD; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824.
[31]
Jordt, S.-E.; Tominaga, M.; Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl. Acad. Sci. 2000, 97, 8134–8139.
[32]
Neelands, T.; Jarvis, M.; Han, P.; Faltynek, C.; Surowy, C. Acidification of rat TRPV1 alters the kinetics of capsaicin responses. Mol. Pain 2005, 1, 28.
[33]
Holz, M.; Heil, S.R.; Sacco, A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys. 2000, 2, 4740–4742.