全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM)

DOI: 10.3390/s130303831

Keywords: torque ripple, frequency domain, FOC, self-tuning algorithm, PMSM, DSP

Full-Text   Cite this paper   Add to My Lib

Abstract:

A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component’s harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.

References

[1]  Gamazo-Real, J.C.; Vázquez-Sánchez, E.; Gómez-Gil, J. Position and speed control of brushless DC motors using sensorless techniques and application trends. Sensors 2010, 10, 6901–6947.
[2]  D?nmezer, Y.; Ergene, L.T. Cogging Torque Analysis of Interior-Type Permanent-Magnet Brushless DC Motor Used in Washers. Proceedings of the 8th International Symposium on Advanced Electromechanical Motion Systems and Electric Drives Joint Symposium, Lille, France, 1–3 July 2009; pp. 1–6.
[3]  Nikolay, S.; Han, Q.; Jatskevich, J.J. Dynamic performance of brushless DC motors with unbalanced hall sensors. IEEE Trans. Energy Conv. 2008, 23, 752–763.
[4]  ?tumberger, B.; ?tumberger, G.; Had?iselimovi?, M.; Zagradi?nik, I. Torque ripple reduction in exterior-rotor permanent magnet synchronous motor. J. Magn. Magn. Mater. 2006, 304, 826–828.
[5]  Tewari, S.V.; Indu, R.B. Torque Ripple Minimization of BLDC Motor with Un-Ideal Back EMF. Proceedings of the 2nd International Conference on Emerging Trends in Engineering and Technology, Maharashtra, India, 16– 18 December 2009; pp. 687–690.
[6]  Zhang, Y.; Zhu, J. Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency. IEEE Trans. Power Electron. 2011, 26, 235–248.
[7]  Zhang, Y.; Zhu, J. A novel duty cycle control strategy to reduce both torque and flux ripples for DTC of permanent magnet synchronous motor drives with switching frequency reduction. IEEE Trans. Power Electron. 2011, 26, 3055–3067.
[8]  Victor, M.H.-G.; Ramón, S.O. PI control plus electric current loops for PM synchronous motors. IEEE Trans. Contr. Syst. Technol. 2011, 19, 868–873.
[9]  Rodríguez-Reséndiz, J.; Gutiérrez-Villalobos, J.M.; Duarte-Correa, D.; Mendiola-Santiba?ez, J.D.; Santillán-Méndez, I.M. Design and implementation of an adjustable speed drive for motion control applications. J. Appl. Res. Technol. 2012, 10, 180–194.
[10]  Hoo, C.-L.; Haris, S.-M. A brief survey on artificial intelligence methods in synchronous motor control. Appl. Mechan. Mater. 2011, 52, 198–203.
[11]  Lu, H.; Zhang, L.; Qu, W. A new torque control method for torque ripple minimization of BLDC motors with un-ideal back EMF. IEEE Trans. Power Electron. 2008, 23, 950–958.
[12]  Cao, J.; Cao, B.; Xu, P.; Zhou, S.; Guo, G.; Wu, X. Torque Ripple Control of Position-Sensorless Brushless DC Motor Based on Neural Network Identification. Proceedings of the 3rd IEEE Conference on Industrial Electronics and Applications, Singapore, 3– 5 June 2008; pp. 752–757.
[13]  Wang, J.; Liu, H.; Zhu, Y.; Cui, B.; Duan, H. A New Minimum Torque-Ripple and Sensorless Control Scheme of BLDC Motors Based on RBF Networks. Proceedings of the 5th International Conference on Power Electronics and Motion Control, Shanghai, China, 14– 16 August 2006; pp. 1–4.
[14]  Kaliappan, E.; Sharmeela, C. Torque ripple minimization of permanent magnet brushless DC motor using genetic algorithm. Power Electron. Instrum. Eng. 2010, 2, 53–55.
[15]  Liu, Y.; Zhu, Z.Q.; Howe, D. Direct torque control of brushless DC drives with reduced torque ripple. IEEE Trans. Ind. Appl. 2005, 41, 599–608.
[16]  Muruganantham, N.; Palani, S. State space modeling and simulation of sensorless permanent magnet BLDC motor. Int. J. Eng. Sci. Technol. 2010, 2, 5099–5106.
[17]  Varatharaju, V.M.; Mathur, B.L.; Udhayakumar, K. A comparative study with modeling and simulation of torque ripple reduction techniques in BLDC motor. Eur. J. Sci. Res. 2011, 52, 295–305.
[18]  Kim, I.; Nakazawa, N.; Kim, S.; Park, C.; Yu, C. Compensation of torque ripple in high performance BLDC motor drives. Contr. Eng. Pract. 2008, 18, 1166–1172.
[19]  Mattavelli, P.; Tubiana, L.; Zigliotto, M. Torque-ripple reduction in PM synchronous motor drives using repetitive current control. IEEE Trans. Power Electron. 2005, 20, 1423–1431.
[20]  Kasac, J.; Novakovic, B.; Majetic, D.; Brezak, D. Passive finite-dimensional repetitive control of robot manipulators. IEEE Trans. Contr. Syst. Technol. 2008, 16, 570–576.
[21]  Aghili, F. Adaptive reshaping of excitation currents for accurate torque control of brushless motors. IEEE Trans. Contr. Syst. Technol. 2008, 16, 356–364.
[22]  Vladan, P.; Romeo, O.; Aleksandamr, M.S.; Gilead, T. Design and implementation of an adaptive controller for torque ripple minimization in PM synchronous motors. IEEE Trans. Power Electron. 2000, 15, 871–880.
[23]  Varatharaju, V.M.; Mathur, B.L.; Udhayakumar, K. Recursive least square algorithm based selective current harmonic elimination in PMBLDC motor drive. Int. J. Comput. Appl. 2011, 30, 32–38.
[24]  Qian, W.; Panda, S.K.; Xu, J. Torque ripple minimization in PM synchronous motors using iterative learning control. IEEE Trans. Power Electron. 2004, 19, 272–279.
[25]  Panda, S.K.; Xu, J.; Qian, W. Review of Torque Ripple Minimization in PM Synchronous Motor Drives. Proceedings of the IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20– 24 July 2008; pp. 1–6.
[26]  Xu, J.; Cao, W. Improved Tracking Performance of Variable Structure Control Using Fourier Series Based Iterative Learning. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, 7– 10 December 1999; pp. 5140–5145.
[27]  Xu, J.; Lee, T.H.; Zhang, H.W. Analysis and Comparison of Two Practical Iterative Learning Control Schemes. Proceedings of the IEEE International Conference on Control Applications, Taipei, Taiwan, 2– 4 September 2004; pp. 382–387.
[28]  Xu, J.; Wang, X.; Lee, T.H. Analysis of Continuous Iterative Learning Control Systems Using Current Cycle Feedback. Proceedings of the IEEE American Control Conference, Seattle, WA, USA, 21– 23 June 1995; pp. 4221–4225.
[29]  Xu, J.; Lee, T.H.; Nair, N. A Revised Iterative Learning Control Strategy for Robotic Manipulators. Proceedings of the Asia-Pacific Workshop on Advances in Motion Control, Singapore, 15– 16 July 1993; pp. 88–93.
[30]  Marino, R.; Tomei, P.; Verrelli, C.M. Position Learning Control for Current-Fed Permanent Magnet Step Motors with Uncertainties. Proceeding of the 10th IEEE International Workshop on Advanced Motion Control, Trento, Italy, 26– 28 March 2008; pp. 699–703.
[31]  Bifaretti, S.; Tomei, P.; Verrelli, C.M. A Global Robust Iterative Learning Position Control for Current-Fed Permanent Magnet Step Motors. Proceeding of the IEEE International Symposium on Industrial Electronics, Bari, Italy, 4– 7 July 2010; pp. 30–35.
[32]  Bifaretti, S.; Iacovone, V.; Rocchi, A.; Tomei, P.; Verrelli, C.M. Global learning position controls for permanent-magnet step motors. IEEE Trans. Ind. Electron. 2011, 58, 4654–4663.
[33]  Lyshevski, S.E. Electromechanical Systems, Electric Machines, and Applied Mechatronics; CRC Press: Boca Raton, FL, USA, 2000.
[34]  Krishnan, R. Dynamic Modeling of Permanent Magnet Synchronous Machines. In Permanente Magnet Synchronous and Brushless DC Motor Drives; CRC Press: Boca Raton, FL, USA, 2010; pp. 225–276.
[35]  Hanselmanl, D.C. Brushless Motor Fundamentals. In Brushless Permanent Magnet Motor Design; Magna Physics Pub.: Hillsboro, OH, USA, 2006; pp. 67–116.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133