We present a novel approach for autonomous location estimation and navigation in indoor environments using range images and prior scene knowledge from a GIS database (CityGML). What makes this task challenging is the arbitrary relative spatial relation between GIS and Time-of-Flight (ToF) range camera further complicated by a markerless configuration. We propose to estimate the camera’s pose solely based on matching of GIS objects and their detected location in image sequences. We develop a coarse-to-fine matching strategy that is able to match point clouds without any initial parameters. Experiments with a state-of-the-art ToF point cloud show that our proposed method delivers an absolute camera position with decimeter accuracy, which is sufficient for many real-world applications (e.g., collision avoidance).
References
[1]
Mautz, R. Indoor Positioning Technologies. Habilitation Thesis, ETH Zurich, Zurich, Switzerland, 2012.
[2]
Blankenbach, J.; Norrdine, A. Building information systems based on precise indoor positioning. J. Location Based Serv. 2010, 5, 22–37.
Kavli, T.; Kirkhus, T.; Thielemann, J.T.; Jagielski, B. Modelling and compensating measurement errors caused by scattering in time-of-flight cameras. Proc. SPIE 2008, doi:10.1117/12.791019.
[5]
Werner, M.; Kessel, M.; Marouane, C. Indoor Positioning Using Smartphone Camera. Proceedings of the 2011 International Conference on Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 21–23 September 2011; pp. 1–6.
[6]
Huang, B.; Gao, Y. Indoor Navigation with iPhone/iPad: Floor Plan Based Monocular Vision Navigation. Proceedings of the ION GNSS Conference, Nashville, TN, USA, 17–21 September 2012.
[7]
Model-Industry Foundation Classes (IFC). Available online: http://buildingsmart.com/standards/ifc (accessed on 8 September 2012).
[8]
Gr?ger, G.; Kolbe, T.H.; Czerwinski, A.; Nagel, C. Open Geospatial Consortium Inc.: Bonn, Germany, 2008.
[9]
Guemundsson, S.á.; Aanaes, H.; Larsen, R. Environmental Effects on Measurement Uncertainties of Time-of-Flight Cameras. Proceedings of the International Symposium on Signals, Circuits and Systems, Iasi, Romania, 13–14 July 2007; pp. 1–4.
Bosche, F.; Haas, C.T. Automated retrieval of 3D CAD model objects in construction range images. Autom. Constr. 2008, 17, 499–512.
[12]
Prusak, A.; Melnychuk, O.; Roth, H.; Schiller, I. Pose estimation and map building with a time-of-flight-camera for robot navigation. Int. J. Intell. Syst. Technol. Appl. 2008, 5, 355–364.
[13]
Fuchs, S.; May, S. Calibration and registration for precise surface reconstruction with time-of-flight cameras. Int. J. Intell. Syst. Technol. Appl. 2008, 5, 274–284.
[14]
Sheh, R.; Kadous, M.W.; Sammut, C. On Building 3D Maps Using a Range Camera: Applications to Rescue Robotics. Technical Report UNSW-CSE-TR-0609; UNSW: Sydney, Australia, 2006.
[15]
May, S.; Dr?schel, D.; Holz, D.; Fuchs, S.; Malis, E.; Nüchter, A.; Hertzberg, J. Three-dimensional mapping with time-of-flight cameras. J. Field Robot. 2009, 26, 934–965.
[16]
Kohoutek, T.K.; Mautz, R.; Donaubauer, A. Real-time indoor positioning using range imaging sensors. Proc. SPIE 2010, doi:10.1117/12.853688.
[17]
Nagel, C.; Stadler, A.; Kolbe, T.H. Conceptual Requirements for the Automatic Reconstruction of Building Information Models from Uninterpreted 3D Models. Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Paris, France, 1–2 September 2009; pp. 46–53.
[18]
New National Survey LV95. Available online: http://www.swisstopo.admin.ch/internet/swisstopo/en/home/topics/survey/networks/lv95.html (accessed on 4 February 2013).
[19]
Büttgen, B.; Oggier, T.; Lehmann, M.; Kaufmann, R.; Lustenberger, F. CCD/CMOS Lock-in Pixel for Range Imaging: Challenges, Limitations and State-of-the-Art. Proceedings of the 1st Range Imaging Research Day, Zurich, Switzerland, 8–9 September 2005; pp. 21–32.
[20]
Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Patt. Anal. Mach. Intell. 1992, 14, 239–256.
[21]
Biber, P.; Stra?er, W. The Normal Distributions Transform: A New Approach to Laser Scan Matching. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 27–31 October 2003; pp. 2743–2748.
[22]
Magnusson, M. The Three-Dimensional Normal-Distributions Transform—An Efficient Representation for Registration, Surface Analysis, and Loop Detection. Ph.D. Thesis, ?rebro University, ?rebro, Sweden, 2009.
[23]
Moré, J.J.; Thuente, D.J. Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Software 1992, 20, 1–23.
[24]
How to Use Normal Distributions Transform. Available online: http://www.pointclouds.org/documentation/tutorials/normal_distributions_transform.php (accessed on 5 February 2013).
[25]
3D Object Recognition based on Correspondence Grouping. Available online: http://pointclouds.org/documentation/tutorials/correspondence_grouping.php (accessed on 5 February 2013).
[26]
Tombari, F.; Di Stefano, L. Object Recognition in 3D Scenes with Occlusions and Clutter by Hough Voting. Proceedings of the 4th Pacific-Rim Symposium on Image and Video Technology, Singapore, Singapore, 14–17 November 2010; pp. 349–355.
[27]
Chen, H.; Bhanu, B. 3D free-form object recognition in range images using local surface patches. Patt. Recog. Lett. 2007, 28, 1252–1262.
Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011.
Lange, R.; Seitz, P. Solid-state time-of-flight range camera. IEEE J. Quant. Electron. 2001, 37, 390–397.
[32]
M?ller, T.; Kraft, H.; Frey, J.; Albrecht, M.; Lange, R. Robust 3D Measurement with PMD Sensors. Proceedings of the 1st Range Imaging Research Day, Zurich, Switzerland, 8–9 September 2005; pp. 1–14.
[33]
Kahlmann, T.; Ingensand, H. High-precision investigations of the fast range imaging camera SwissRanger. Proc. SPIE 2007, doi:10.1117/12.749729.
[34]
MESA Imaging AG. SR4000 Final Test Report; MESA Imaging AG: Zurich, Switzerland, 2011.
[35]
Kahlmann, T.; Ingensand, H. Calibration and improvements of the high-resolution range-imaging camera SwissRanger. Proc. SPIE 2005, doi:10.1117/12.582513.
[36]
Plane Model Segmentation. Available online: http://pointclouds.org/documentation/tutorials/planar_segmentation.php (accessed on 5 February 2013).
[37]
Aligning Object Templates to a Point Cloud. Available online: http://pointclouds.org/documentation/tutorials/template_alignment.php (accessed on 5 February 2013).
[38]
Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009.
[39]
Karel, W.; Dorninger, P.; Pfeifer, N. In Situ Determination of Range Camera Quality Parameters by Segmentation. Proceedings of VIII International Conference on Optical 3-D Measurement Techniques, Zurich, Switzerland, 9–12 July 2007; pp. 109–116.
[40]
Mure-Dubois, J.; Hügli, H. Optimized scattering compensation for time-of-flight camera. Proc. SPIE 2007, doi:10.1117/12.733961.
[41]
Gut, O. Untersuchungen des 3D-Sensors SwissRanger. Diploma Thesis, ETH Zurich, Zurich, Switzerland, 2004.
[42]
The OGC Forms IndoorGML Indoor Location Standards Working Group, Available online: http://www.opengeospatial.org/node/1537 (accessed on 5 February 2013).
[43]
Lindner, M.; Kolb, A. Compensation of Motion Artifacts for Time-of-Flight Cameras. In Dynamic 3D Imaging; Kolb, A., Koch, R., Eds.; Springer: Jena, Germany, 2009; pp. 16–27.
[44]
Kohoutek, T.K.; Dr?schel, D.; Mautz, R.; Behnke, S. Indoor Positioning and Navigation Using Time-of-Flight Cameras. In TOF Range-Imaging Cameras; Remondino, F., Stoppa, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. doi:10.1007/978-3-642-27523-4_8.